دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Ranbir Chander Sobti, Sunil K. Lal, Ramesh K. Goyal سری: ISBN (شابک) : 9811953988, 9789811953989 ناشر: Springer سال نشر: 2023 تعداد صفحات: 663 [664] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Drug Repurposing for Emerging Infectious Diseases and Cancer به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب استفاده مجدد از دارو برای بیماری های عفونی نوظهور و سرطان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب راهبردهای تغییر کاربری دارو برای مبارزه با بیماری های عفونی و سرطان را ارائه می دهد. این مقاله در مورد رویکردهای تجربی و در سیلیکو کلیدی برای تغییر موقعیت دارویی مدرن، از جمله تطبیق امضا، اتصال مولکولی، مطالعات مرتبط با ژنوم و رویکردهای مبتنی بر شبکه با کمک هوش مصنوعی بحث میکند. علاوه بر این، این کتاب استراتژیهای محاسباتی و تجربی مختلفی را برای درک بهتر مکانیسمهای بیماری و شناسایی کاندیدهای دارویی برای دارودرمانی شخصیسازی شده ارائه میکند. همچنین پایگاههای اطلاعاتی برای تغییر موقعیت دارو را بررسی میکند، رویکردهای اتخاذ شده برای تغییر موقعیت دارو را خلاصه میکند، و ویژگیها و چالشهای آنها را برجسته و مقایسه میکند. در پایان، این کتاب چالشها و محدودیتهایی را که در تغییر موقعیت دارویی محاسباتی با آن مواجه میشوند، مورد بحث قرار میدهد.
This book presents drug repurposing strategies to combat infectious diseases and cancer. It discusses key experimental and in silico approaches for modern drug repositioning, including signature matching, molecular docking, genome-wide associated studies, and network-based approaches aided by artificial intelligence. Further, the book presents various computational and experimental strategies for better understanding disease mechanisms and identify repurposed drug candidates for personalized pharmacotherapy. It also explores the databases for drug repositioning, summarizes the approaches taken for drug repositioning, and highlights and compares their characteristics and challenges. Towards the end, the book discusses challenges and limitations encountered in computational drug repositioning.
Preface Contents Editors and Contributors Chapter 1: Drug Repurposing: An Advance Way to Traditional Drug Discovery 1.1 Introduction 1.2 Rationale of Drug Repurposing 1.3 Role of Drug Repurposing in Conventional Pharmaceutical Market 1.4 Roadmap to Modern Drug Repurposing 1.5 Drug Repurposing Strategies and Approaches 1.5.1 Computational Approaches 1.5.2 Experimental Approaches 1.6 Opportunity and Challenges in Drug Repurposing 1.7 Conclusion References Chapter 2: Drug Polypharmacology Toward Drug Repurposing 2.1 Drug Pharmacology 2.2 Drug Repurposing 2.3 Need for Drug Repurposing 2.4 Challenges of Drug Repurposing 2.5 Different Strategies of Drug Repurposing 2.6 Methodology for Drug Repurposing 2.6.1 Virtual Screening 2.6.2 Structure Prediction of Target 2.7 Chemical Composition of Drug 2.8 Prediction of Protein Binding Site 2.9 Successful Example of Drug Repurposing References Chapter 3: Pharmacovigilance-Based Drug Repurposing 3.1 Drug Development and Pharmacovigilance 3.1.1 Need for Pharmacovigilance 3.2 Pharmacovigilance and Drug Repurposing 3.2.1 Serendipity 3.2.2 Signature Matching 3.2.3 Mechanistic Profiling 3.2.4 Inverse Signals 3.2.4.1 Signal 3.2.4.1.1 Inverse Signal 3.3 The Process of Drug Repurposing 3.3.1 Present Scenario 3.3.1.1 Alzheimer´s Disease 3.3.1.2 Raynaud´s Phenomenon (RP) 3.3.1.3 COVID-19 3.4 Future Perspectives Further Reading Chapter 4: In Silico Analysis of Cellular Interactors of PQBP1 for Potential Drug Repurposing 4.1 Introduction 4.2 Material and Methods 4.3 Results and Discussion References Chapter 5: Drug Repurposing Opportunities in Cancer 5.1 Introduction 5.2 Drug Repurposing 5.3 Drug Repurposing Barriers 5.4 Computational Approaches in Drug Repurposing 5.5 Drug Repurposing in Cancer 5.5.1 Importance of Drug Repurposing in Cancer Treatment 5.5.2 Repurposing Small-Molecule Non-Oncology Drugs 5.5.2.1 Non-Steroidal Anti-Inflammatory Drugs (NSAIDs) 5.5.2.1.1 Aspirin 5.5.2.1.2 Diclofenac 5.5.2.1.3 Ibuprofen 5.5.2.1.4 Naproxen 5.5.2.2 Statins 5.5.2.2.1 Simvastatin 5.5.2.3 Antidiabetic Drugs 5.5.2.3.1 Metformin 5.5.2.3.2 Phenformin 5.5.2.4 Selective Estrogen Receptor Modulators (SERMs) 5.5.2.4.1 Raloxifene 5.5.2.5 Antidepressants 5.5.2.5.1 Imipramine 5.5.2.5.2 Trifluoperazine 5.5.2.5.3 Fluoxetine 5.5.2.6 Antipsychotic 5.5.2.6.1 Chlorpromazine 5.5.2.7 Anticonvulsant 5.5.2.7.1 Valproic Acid 5.5.2.8 Antiviral Drugs 5.5.2.8.1 Ritonavir 5.5.2.8.2 Nelfinavir 5.5.2.8.3 Lopinavir 5.5.2.9 Antibiotics 5.5.2.9.1 Ciprofloxacin 5.5.2.9.2 Nifuroxazide 5.5.2.9.3 Moxifloxacin 5.5.2.10 Antifungals 5.5.2.10.1 Clotrimazole 5.5.2.10.2 Itraconazole 5.5.2.11 Antiepileptic Drug 5.5.2.11.1 Flunarizine 5.5.2.11.2 Prazosin 5.5.2.12 Antimalarials 5.5.2.12.1 Amodiaquine 5.5.2.12.2 Chloroquine 5.5.2.13 Anthelmintics 5.5.2.13.1 Mebendazole 5.5.2.13.2 Niclosamide 5.5.2.13.3 Albendazole 5.5.2.14 Antirheumatics 5.5.2.14.1 Leflunomide 5.5.2.14.2 Auranofin 5.5.2.15 Antilipidemic 5.5.2.15.1 Fenofibrate 5.5.2.16 Alcohol Antagonist Drug 5.5.2.16.1 Disulfiram 5.5.3 Repurposing Phytochemicals 5.5.3.1 Resveratrol 5.5.3.2 Quercetin 5.5.3.3 Epigallocatechin-3-Gallate 5.5.3.4 Fisetin 5.5.3.5 Berberine 5.5.3.6 Sanguinarine 5.5.3.7 Caffeic Acid Phenethyl Ester 5.5.3.8 Capsaicin 5.5.3.9 Eugenol 5.5.3.10 Caffeic Acid 5.5.3.11 Oxymatrine 5.6 Repurposed Non-Oncology Drugs in Clinical Trials for the Treatment of Different Cancers 5.7 Future Prospects 5.8 Concluding Remarks References Chapter 6: Repurposing of Flavonoids as Promising Phytochemicals for the Treatment of Lung Carcinoma 6.1 Introduction 6.1.1 Classifications of Flavonoids 6.2 Reported Flavonoids Against Lung Cancer 6.2.1 Anticarcinogenic Properties and Targets of Flavonoids 6.2.2 Molecular Mechanism of Action of Flavonoids 6.2.2.1 Carcinogenic Metabolic Activation Pathway Targeting by Flavonoids 6.2.2.2 Antiproliferative Activity 6.2.2.3 Cell Signaling 6.2.2.4 Apoptotic Effect 6.2.2.5 Differentiation 6.2.2.6 Antiangiogenic Effect 6.2.2.7 Multidrug Resistance 6.2.2.8 Antioxidant Activity 6.3 Flavonoids and Their Reported Biological Activities 6.4 Combination of Strategies and Futuristic Approaches 6.5 Conclusions References Chapter 7: Targeted Therapies Used in the Treatment of Non-Small-Cell Lung Cancer: An Overview 7.1 Introduction 7.1.1 Classification of Lung Cancer 7.1.2 Risk Factors in Lung Cancer 7.1.3 Diagnosis of NSCLC and Its Various Stages 7.2 Treatment for Non-Small-Cell Lung Cancer 7.2.1 Surgery 7.2.2 Radiotherapy 7.2.3 Chemotherapeutic Drugs 7.2.3.1 First-Line Treatment for NSCLC 7.2.3.1.1 Cisplatin (1978) 7.2.3.1.2 Paclitaxel (2012) 7.2.3.1.3 Methotrexate (2014) 7.2.3.1.4 Vinorelbine (1994) 7.2.3.1.5 Gemcitabine (1996) 7.2.3.2 Second-Line Treatment for NSCLC 7.2.3.2.1 Docetaxel (1999) 7.2.4 Targeted Therapy Used for Curing of NSCLC 7.2.4.1 Drugs Targeting Angiogenesis 7.2.4.1.1 Antiangiogenic Agents VEGF Blockers Bevacizumab (2006) Ramucirumab (2014) MMP Blockers Batimastat Marimastat Prinomastat BAY12-95666 (Tanomastat) ONO-4817 7.2.4.1.2 Vascular Targeting Agent 7.2.4.2 Drugs Targeting EGFR 7.2.4.2.1 Anti-EGFR Monoclonal Antibodies Cetuximab 7.2.4.2.2 EGFR Tyrosine Kinase Inhibitors (TKIs) Gefitinib (2003) Erlotinib (2004) Afatinib (2013) Dacomitinib (2018) 7.2.4.2.3 Inhibitors Target Cells with T790M Mutation Osimertinib (2015) 7.2.4.2.4 Inhibitors Used for Squamous Cells Necitumumab (2015) 7.2.4.2.5 Others Rociletinib EGF816 (Nazartinib) ASP8273 HM61713 (Olmutinib) 7.2.4.3 Drugs Targeting ALK Receptor 7.2.4.3.1 Crizotinib (2011) 7.2.4.3.2 Ceritinib (2014) 7.2.4.3.3 Alectinib (2015) 7.2.4.3.4 Brigatinib (2017) 7.2.4.3.5 Lorlatinib (2018) 7.2.4.4 Drugs Targeting BRAF Receptor 7.2.4.4.1 Dabrafenib (2013) 7.2.4.4.2 Trametinib (2017) 7.2.4.4.3 Vemurafenib (2011) 7.2.4.4.4 Selumetinib (AZD6244) 7.2.4.5 Drugs Targeting MET Receptor 7.2.4.5.1 Cabozantinib 7.2.4.6 Drug Targeting HER2 7.2.4.7 Drugs Targeting ROS-1 Receptor 7.2.4.7.1 Entrectinib (2019) 7.2.4.8 Drugs Targeting RET Receptor 7.2.4.8.1 Vandetanib 7.2.4.8.2 Lenvatinib 7.2.4.8.3 Ponatinib 7.2.4.9 Drugs Targeting NTRK1 Receptor 7.2.4.10 Drugs Targeting PIK3CA 7.2.4.10.1 LY3023414 7.2.4.10.2 PQR309 (Bimiralisib) 7.2.4.11 Drugs Targeting MEK-1 Receptor 7.2.4.11.1 Cobimetinib 7.3 Conclusion References Chapter 8: Drug Repurposing in Cancer 8.1 Introduction 8.1.1 Advantages 8.1.2 Challenges 8.1.2.1 Dosing and Safety 8.1.2.2 Data Availability 8.1.2.3 Intellectual Property 8.2 Drug Repurposing in Cancer Therapy 8.2.1 Cytostatic Agents for Cancer Therapy 8.2.1.1 Aspirin 8.2.1.2 Metformin 8.2.1.3 Statins 8.3 Target Prediction in Cancer 8.3.1 Structure-Based Target Prediction 8.3.1.1 Docking 8.3.1.2 Binding Site Prediction 8.3.1.3 Pharmacophore-Based Screening 8.3.1.4 Interaction Similarity 8.3.2 Cheminformatics-Based Target Prediction 8.4 Effect of DR in Different Pathways 8.4.1 Wnt Pathway 8.4.2 mTOR Signaling Pathway-The Role of AMPK Activation in Aspirin-Mediated mTOR Inhibition 8.4.3 Inhibition of Ras/ERK and Ras/mTOR Pathways 8.4.4 ERK/Akt Pathway 8.4.5 AMPK-NF-κB Signaling 8.5 Large Data Analysis and Precise Personal Therapy 8.5.1 Genome-Wide Association Studies (GWAS) 8.5.2 Electronic Health Records (EHRs) 8.5.3 PheWAS 8.6 Conclusion References Chapter 9: Targeting the Ubiquitin Machinery for Cancer Therapeutics 9.1 Introduction 9.1.1 Ubiquitin-Proteasome System 9.1.1.1 Ubiquitin 9.1.1.2 Proteasome Machinery 9.1.2 Classification of Ubiquitination and Deubiquitination Enzymes 9.1.2.1 E1-Activating Enzyme 9.1.2.2 E2-Conjugating Enzyme 9.1.2.3 E3 Ubiquitin Ligase 9.1.2.4 Deubiquitination Enzymes (DUBs) 9.1.3 Role of Ubiquitination in Tumorigenesis 9.1.3.1 Tumor Metabolism 9.1.3.2 Tumor Microenvironment Modulation 9.1.3.3 Cancer Stem Cells (CSCs) Stemness Maintenance 9.1.4 Deregulation of the Ubiquitin System and Cancer 9.1.4.1 Dysregulation of E3 Ligases 9.1.4.2 Dysregulation of Deubiquitinating Enzymes 9.1.5 Targeting the Ubiquitin-Proteasome System 9.1.5.1 Targeting the E1/E2 Enzyme 9.1.5.2 Targeting the E3 Enzyme 9.1.5.3 Targeting DUBs 9.1.5.4 Targeting Proteasome Activity 9.2 Conclusions and Future Perspectives References Chapter 10: Repurposing of Serotonin Pathway Influencing Drugs for Potential Cancer Therapy and Antimicrobial Functions 10.1 Introduction 10.2 Role of Serotonin and Serotonin Receptors in the Immunomodulation 10.3 Classes of Drugs Involved with the Serotonin Pathway 10.3.1 Antidepressants 10.3.2 Antiemetics 10.3.3 Antipsychotics 10.4 Probable Repurposing/Repositioning of Antidepressants and Antipsychotics for Cancer Therapy and Antimicrobial Treatment 10.5 Conclusion References Chapter 11: Drug Repurposing for Hematological Malignancies 11.1 Introduction 11.2 How Drug Repurposing Can Help in Oncotherapeutics? 11.2.1 De Novo Drug Synthesis 11.2.1.1 Drug Discovery 11.2.1.1.1 Target Identification/Discovery Target-Centric Drug Discovery Phenotype-Centric Drug Discovery Direct Approach of Target Deconvolution Indirect Approach of Target Deconvolution 11.2.1.1.2 Target Validation 11.2.1.1.3 Lead Identification 11.2.1.1.4 Lead Optimization 11.2.1.2 Preclinical Development 11.2.1.2.1 Investigational New Drug Application (IND) Filing 11.2.1.3 Clinical Trials/Development 11.2.1.3.1 Phase 0 11.2.1.3.2 Phase 1: Safety 11.2.1.3.3 Phase 2: Efficacy 11.2.1.3.4 Phase 3 11.2.1.4 FDA Drug Review and Approval 11.2.1.5 Postmarket Drug Safety Monitoring (Phase 4) 11.3 Drug Repurposing/Repositioning 11.4 The Drug Repurposing Overview 11.5 Profiles of Drug Repurposing 11.6 Approaches of Drug Repurposing 11.6.1 Experimental Approach 11.6.2 Computational Approaches 11.6.2.1 Drug-Centric Repositioning 11.6.2.2 Target-Centric Repositioning 11.6.2.3 Disease-Centric Repositioning 11.6.2.4 Signature-Based Approaches 11.6.2.5 Network-Based Approaches 11.6.2.6 Mixed Approach 11.7 Drug Repurposing for Hematological Malignancies 11.8 Leukemia 11.8.1 Acute Lymphoid Leukemia (ALL) 11.8.1.1 Tigecycline (TGC) 11.8.1.2 Tamoxifen (TAM) 11.8.1.3 Cannabidiol (CBD) 11.8.2 Chronic Lymphoid Leukemia (CLL) 11.8.2.1 Simvastatin 11.8.2.2 Auranofin 11.8.3 Acute Myeloid Leukemia (AML) 11.8.3.1 Valproic Acid 11.8.3.2 Artesunate 11.8.4 Chronic Myeloid Leukemia (CML) 11.8.4.1 Celecoxib 11.8.4.2 Pioglitazone 11.9 Lymphoma 11.9.1 Hodgkin´s Lymphoma (HL) 11.9.1.1 Verapamil (VRP) 11.9.2 Non-Hodgkin´s Lymphoma (NHL) 11.9.3 Aggressive Diffuse Large B-Cell Lymphoma 11.9.3.1 Auranofin 11.9.4 Multiple Myeloma (MM) 11.9.4.1 Thalidomide 11.9.4.2 Nelfinavir 11.10 Status of Drug Repurposing in Hematological Malignancies 11.11 Intellectual Property and Regulatory Issues in Drug Repurposing 11.12 Conclusion References Chapter 12: Drug Repurposing for, ENT and Head and Neck, Infectious and Oncologic Diseases: Current Practices and Future Possi... 12.1 Section A: Repurposing Novel Antimetabolic Imidazole Drug for Infectious Airways Diseases with Implications in Developmen... 12.1.1 Introduction 12.1.2 Novel Olfactory Druggable Targets for Clinical Management of COVID-19 and COVID-19-Associated Mucormycosis (CAM) 12.1.3 Scope of Intranasal Sprays for Treating Infectious Airway Diseases 12.1.4 Literature in Support of Implication of our Our Preliminary Findings for Developing Anti-IFI Intranasal Sprays 12.1.5 Challenges in the COVID-19 and CAM Therapeutics 12.1.6 Repurposing Natural Azoles in COVID-19-Associated Mucormycosis 12.1.6.1 Mucorales and Antifungal Resistance 12.1.6.2 L Carnosine/Anserine Azoles with Antidiabetic and Anti-COVID (Host Targeting) Potential for Repurposing in CAM 12.1.7 Iron Metabolism and Homeostasis in Fungal Infections 12.1.7.1 Mitochondrial-Driven Iron Metabolism in Azole Drug Resistance 12.1.8 Novel Azoles Targeting Host-Fungal Interactions for Drug Repurposing in CAM 12.1.8.1 Novelty of Repurposing L-Carnosine in Mucormycosis and CAM 12.2 Section B: Current Use and Evidence in Otolaryngology and Head and Neck Surgery (ENT) 12.2.1 Introduction 12.2.1.1 Sinonasal and Airway Diseases 12.2.1.2 Diseases of the EAR 12.2.1.3 Diseases of Head and Neck References Chapter 13: Repurposing of Immunomodulators for the Treatment of Cancer with QSAR Approaches 13.1 Introduction 13.2 Immunotherapy as Anticancer 13.3 Prospects for Repurposing Drugs for Cancer Treatment 13.4 Natural Derivatives as a Source of Immunomodulator 13.4.1 Maslinic Acid 13.4.2 Mushroom Species 13.4.3 Curcumin 13.4.4 Piperine 13.4.5 Cardamom (Elettaria Cardamomum) 13.4.6 Gingerol 13.4.7 Adriamycin 13.4.8 Imide Drugs 13.4.9 Metformin 13.4.9.1 QSAR Approaches References Chapter 14: Reverse Translational Approach in Repurposing of Drugs for Anticancer Therapy 14.1 Introduction 14.2 Prospective of Reverse Translational Research Approach in Drug Development for Cancer Therapy 14.3 Opportunities in Drug Repurposing Approach 14.4 Strategies for Drug Repurposing 14.5 Necessity of Drug Repurposing for Managing Cancer 14.6 Reverse Translation for Drug Repurposing in Anticancer Therapies 14.7 Antibiotics 14.7.1 Clarithromycin 14.7.2 Doxycycline 14.7.3 Minocycline 14.7.4 Tigecycline 14.7.5 Nitroxoline 14.7.6 Cephalosporins 14.7.7 Fluoroquinolones 14.8 Antivirals 14.8.1 Ganciclovir 14.8.2 Lopinavir 14.8.3 Indinavir 14.8.4 Cidofovir 14.8.5 Efavirenz 14.8.6 Maraviroc 14.8.7 Nelfinavir 14.8.8 Ritonavir 14.8.9 Ribavirin 14.8.10 Zidovudine 14.8.11 Amantadine 14.9 Antifungals 14.9.1 Itraconazole 14.9.2 Ketoconazole 14.9.3 Clioquinol 14.9.4 Clotrimazole 14.9.5 Terbinafine 14.10 Antimalarial Drugs 14.11 Anthelmintic Agents 14.11.1 Mebendazole, Niclosamide, Albendazole and Ivermectin 14.11.2 Ivermectin 14.11.3 Nitazoxanide 14.11.4 Praziquantel 14.11.5 Levamisole 14.12 Expanding Opportunities of Drug Repurposing 14.12.1 Treatment of COVID-19 Along with Cancer 14.12.2 Precision Medicines Development 14.13 Conclusion and Future Prospects References Chapter 15: Therapeutic Targeting of Antineoplastic Drugs in Alzheimer´s Disease: Discovered in Repurposed Agents 15.1 Introduction 15.2 The Common Shared Link Between Cancer and AD 15.3 Pathophysiological Pathways Shared Between Cancer and AD Cell Cycle 15.3.1 MAPK Pathway 15.3.2 Wnt Pathway 15.3.3 Redox Signaling Pathway 15.3.4 PI3K/AKT/mTOR Pathway 15.3.5 Anticancer Agents Can Be Repurposed for AD 15.3.6 Bexarotene 15.3.7 Tamibarotene (Am80) 15.3.8 Nilotinib 15.3.9 Thalidomide 15.3.10 Imatinib (Gleevec) 15.3.11 Sunitinib 15.3.12 Pazopanib 15.3.13 Carmustine (BCNU) 15.3.14 Paclitaxel (Taxol) 15.4 Conclusion and Future Perspective References Chapter 16: Repurposing of Drugs for the Treatment of Microbial Diseases 16.1 Introduction 16.2 Antimicrobial Agents: Mechanism of Resistance 16.3 Need of Repurposing of Drugs for Microbial Diseases 16.4 Repurposing of Drugs as Antimicrobial Agents 16.4.1 Repurposing of Anticancer Drugs for Microbial Diseases 16.4.2 Repurposing of Anti-inflammatory Drugs for Microbial Diseases 16.4.3 Repurposing of Anthelmintic Drugs for Microbial Diseases 16.4.4 Repurposing of Cardiovascular Drugs for Microbial Diseases 16.4.5 Repurposing of Antipsychotic and Antidepressant Drugs for Microbial Diseases 16.4.6 Repurposing of Antihistaminic Agents for Microbial Diseases 16.4.7 Other Drugs Repurposed Against Microbial Infections 16.5 Conclusion References Chapter 17: Repurposing Anti-inflammatory Agents in the Potential Treatment of SARS-COV-2 Infection 17.1 Introduction 17.2 Epidemiology of COVID-19 17.3 Inflammatory Reaction in Pathophysiology of COVID-19 17.4 Pathways Involved in Inflammation 17.4.1 JAK/STAT Pathway 17.4.2 NF-κB Pathway 17.4.3 Toll-like Receptor Pathway 17.4.4 MAPK Pathway 17.4.5 COX Pathway 17.4.6 Inflammasome 17.5 Inhibitors/Targeting Agents of Inflammatory Pathways of JAK-STAT, NF-κB, MAPK, COX, iNOS, etc. 17.5.1 JAK-STAT Inhibitors/Targeting Agents 17.5.1.1 Tofacitinib 17.5.1.2 Baricitinib 17.5.1.3 Ruxolitinib 17.5.1.4 Other Jakinibs 17.5.2 COX Inhibitors/Targeting Agents 17.5.3 MAPK Inhibitors/Targeting Agents 17.5.4 NF-κB Inhibitors/Targeting Agents 17.5.5 iNOS Inhibitors/Targeting Agents 17.6 Conclusion References Chapter 18: Repurposing Drugs for Viruses and Cancer: A Novel Drug Repositioning Strategy for COVID-19 18.1 Introduction 18.2 Classic Examples of Anticancer Drug Repositioning 18.2.1 Zidovudine 18.2.2 Cardiac Glycosides 18.3 Anticancer Drug Candidates for Previous SARS-CoV and MERS-CoV 18.3.1 Imatinib 18.3.2 Saracatinib 18.3.3 Homoharringtonine 18.4 The General Life Cycle and Pathogenesis 18.4.1 Viral Entry and Membrane Fusion 18.4.2 Replication and Virus Assembly 18.5 Pathophysiology 18.6 Anticancer Drugs with Potential Antiviral Properties 18.6.1 Inhibition of Virus Replication by Targeting the Main Protease (M pro) 18.6.1.1 Carmofur 18.6.1.2 Carfilzomib 18.6.2 Inhibition of Viral Protein Synthesis by Targeting Transcription-Complex Proteins 18.6.2.1 Zotatifin 18.6.2.2 Plitidepsin 18.6.3 Inhibition of Viral Entry into Hostspiepr146 Cells 18.6.3.1 Toremifene 18.7 Targeting Cellular Pathway Mechanisms as a Strategy for Drug Repositioning 18.7.1 PI3K/AKT/mTOR 18.7.2 STAT-3 18.7.3 VEGF 18.8 Limitations and Future Perspectives of Drug Repositioning 18.8.1 Accessibility to Data and Compound 18.8.2 Drug Safety and Toxicity 18.8.3 Exhaustion of Conventional Drug Repositioning Strategies 18.8.4 Intellectual Property Protection 18.8.5 Challenges of Bioinformatics Approaches 18.9 Conclusion References Chapter 19: Drug Repurposing for COVID-19 Therapy: Pipeline, Current Status and Challenges 19.1 Introduction 19.2 Advantages of Drug Repurposing 19.3 Drug Repurposing for COVID-19 Treatment 19.4 Drug Repurposing Pipeline for COVID-19 Therapy 19.4.1 Wet Lab-Based Research 19.4.2 Dry Lab-Based Research 19.4.2.1 Systems Biology 19.4.2.2 Computational Structural Biology 19.4.2.3 Mathematical Biology 19.4.2.4 Serendipitous Discovery 19.4.2.5 Screening of Repurposed Drugs 19.5 Current Status of Drug Repurposing for COVID-19 Therapy 19.5.1 Drugs That Show Antiviral Activity by Targeting Viral Proteins 19.5.2 Drugs That Show Antiviral Activity by Targeting the Host 19.5.3 Drugs That Act Indirectly by Reducing the Disease Severity 19.6 Challenges in Drug Repurposing Against COVID-19 19.6.1 Sub-optimal In Vivo Activity of the Drug Compounds 19.6.2 Limited Access to Compounds and Related Data 19.7 Conclusion and Future Prospects References Chapter 20: 2-Deoxy-d-Glucose: A Repurposed Drug for COVID-19 Treatment 20.1 Introduction 20.2 Drug-Target Interaction Profiles Are a Natural Extension of Molecular Docking 20.3 Comparison of COVID-19 Progression with Cancer 20.4 2-DG Molecule as a Glucose Analog 20.5 Pharmacological Properties of 2-DG of Relevance to Cancer and COVID-19 Therapies 20.5.1 Glycolysis Inhibition 20.5.2 Autophagy Induction 20.5.3 Apoptosis Induction 20.5.4 Protein N-Glycosylation 20.6 2-DG as an Adjuvant to Cancer Therapy 20.7 2-DG Against Various Viral Diseases 20.8 Rationale for Using 2-DG as an Anti-COVID Drug 20.9 Use of 2-DG Against SARS-CoV-2 20.10 Possible Mechanism of Action of Use of 2-DG Against SARS-CoV-2 20.11 Future Perspective 20.12 Conclusion References Chapter 21: Repurposing Methylene Blue for the Management of COVID-19: Prospects, Paradox, and Perspective 21.1 Introduction 21.2 Problems with Conventional Therapy 21.3 Rationale and Hypothesis of Methylene Blue as an Adjunct to Standard of Care 21.4 Value Addition by Photoirradiation 21.5 Utility of MB in Fungal Superinfections Associated With COVID-19 21.6 Risk-Benefit Analysis 21.7 Prospects, Paradox, and Perspective for COVID-19 and the Associated Complications 21.8 Conclusion References Chapter 22: Drug Repurposing in COVID-19 and Cancer: How Far Have We Come? 22.1 Introduction 22.2 Success Stories of Drug Repurposing 22.3 Drug Repurposing and Infectious Diseases 22.3.1 COVID-19 22.3.2 Cancer 22.4 Challenges and Future Perspectives References Chapter 23: Repurposing of Doxycycline to Attenuate Influenza Virus Pathogenesis Via Inhibition of Matrix Metalloproteinases i... 23.1 Neutrophils and Influenza Virus-Induced Lung Injury 23.2 Functions of Matrix Metalloproteinases 23.3 Repurposing Doxycycline to Mitigate Influenza-Induced Tissue Injury 23.4 Study Objectives 23.5 Materials and Methods 23.6 Results and Discussion 23.6.1 Mouse-Adapted Influenza H3N2 P16 Virus Infection of MPRO Neutrophils Enhances MMP-2 and MMP-9 Protein Expression, Gelat... 23.6.2 Doxycycline Treatment Inhibits MMP-2 and MMP-9 Protein Expression, Gelatinase Activity, and MMP-9 Gene Expression in Ne... 23.6.3 Future Perspectives and Repurposing Doxycycline for Other Infections 23.7 Summary References Chapter 24: Therapeutic Repurposing Approach: New Opportunity for Developing Drugs Against COVID-19 24.1 Introduction 24.2 COVID-19 Risk Factors 24.3 Pathophysiology Targets for COVID 24.4 Clinical Feature 24.4.1 Asymptomatic Phase (Stage 1) 24.4.2 Stage 2: Upper Airway and Airway Response (in the Coming Days) 24.4.3 Stage 3: Hypoxia, Ground-Glass Infiltration, and Progression to ARDS 24.5 Therapeutic Approach for COVID-19 24.6 Repurposing of the Drugs to Cure COVID-19 24.6.1 Repurposed Drugs That Act on Virus-Related Targets 24.6.2 Repurposed Drugs Act Through Inhibition of Viral Enzymes 24.6.3 Repurposed Drugs Targeting the Virus Uptake Pathways 24.6.4 Repurposed Drugs Act Through Host Targets Such as Antiviral Immunity 24.6.5 Other Repurposed Drugs for the Treatment of COVID 24.7 Conclusion and Future Perspective References Chapter 25: Repurposing of Therapeutic Approaches for the Treatment of Vitiligo 25.1 Introduction 25.2 Medical Treatment of Vitiligo 25.3 Drug Repositioning 25.4 Repurposing of Approved Therapeutics for Vitiligo 25.4.1 Treatment Goals 25.4.2 Disadvantage of Current Vitiligo Therapeutics 25.4.3 Advantage Associated with Repurposing of Drugs 25.4.4 Mechanism Target-Vitiligo 25.5 Available Therapy 25.5.1 Topical Corticosteroids 25.5.2 Topical Calcineurin Inhibitors 25.5.3 Topical Vitamin D Analogues 25.5.4 Topical Prostaglandin Analogues 25.5.5 Topical Antioxidants 25.5.6 Phototherapy 25.5.7 PUVA-Psoralen Plus UVA-A 25.5.8 Narrow Band UVB 25.5.9 Other Photochemotherapies 25.5.10 Lasers 25.5.10.1 Monochromatic Excimer Laser (MEL) 25.5.10.2 Helium Neonspiepr146 Laser 25.6 Systemic Treatment 25.7 Surgical Methods 25.7.1 Cellular Grafts 25.8 Emerging Treatments by Drug Repurposing 25.8.1 Minocycline 25.8.2 Methotrexate 25.8.3 Cyclosporine 25.8.4 JAK-STAT Inhibitors 25.8.5 Ruxolitinib 25.8.6 STAT Inhibitors 25.8.7 Alpha-Melanocyte-Stimulating Hormone (MSH) 25.8.8 UVA1 Lasers 25.8.9 Photodymanic Therapy 25.8.10 Oral Antioxidants 25.8.11 Topical Immunosuppressants 25.8.12 Basic Fibroblast Growth Factor 25.9 Targeted Immunotherapy 25.10 Future Scope 25.11 Reported Clinical Trials 25.12 Future Prospects and Conclusion References Chapter 26: Emerging Infections and Their Management 26.1 Emerging Infections 26.2 Origin of Emerging Infections 26.3 ESKAPE Pathogen 26.4 Variations in the Pathogenesis of EIDs 26.5 Identification 26.5.1 Markers 26.5.2 Databases 26.5.3 Hotspots 26.6 Management of EIDs 26.6.1 Surveillance 26.6.2 Risk Assessment 26.6.3 Repurposing of Drugs References Chapter 27: Repurposing of Minocycline, a Tetracycline Antibiotic, for Neurodegenerative Disorders 27.1 Introduction 27.2 Minocycline, a Tetracycline Antibiotic 27.2.1 Structure 27.2.2 Physicochemical Properties 27.2.3 ADME profile 27.2.3.1 Absorption 27.2.3.2 Distribution 27.2.3.3 Metabolism 27.2.3.4 Excretion 27.2.3.5 Half-Life and Clearance 27.2.3.6 Adverse Effects and Toxicity 27.2.4 Mechanism of Action 27.2.4.1 Anti-microbial Action 27.2.4.1.1 Translation 27.2.4.2 Anti-apoptotic Actions 27.2.4.3 Anti-inflammatory Action 27.2.4.4 Inhibition of Matrix Metalloproteinases 27.2.4.5 Effect of Minocycline on Protein Misfolding 27.2.5 Why Can Minocycline Be Repurposed in Neurodegenerative Diseases? 27.3 Repurposing of Minocycline in Neurodegenerative Diseases (Pre-clinical & Clinical Evidence) 27.3.1 Alzheimer´s & Other Related Dementias 27.3.1.1 Pathology 27.3.1.2 Pre-clinical Trails 27.3.1.3 Clinical Trials 27.3.2 Parkinson´s Disease 27.3.2.1 Pre-clinical Studies 27.3.2.2 Clinical Trails 27.3.3 Huntington's Disease 27.3.3.1 Pre-clinical Evidence 27.3.3.2 Clinical Evidence 27.3.4 Amyotrophic Lateral Sclerosis (ALS) 27.3.4.1 Pathophysiology 27.3.4.1.1 Causes 27.3.4.1.2 Treatment 27.3.4.1.3 Minocycline in ALS 27.3.4.1.4 Minocycline and Riluzule (Rilitek) 27.3.5 Multiple Sclerosis 27.3.5.1 Diagnosis 27.3.5.2 Minocycline in Multiple Sclerosis 27.3.5.3 Mechanism of Action 27.3.5.4 Pilot Study of Minocycline in RRMS 27.3.5.5 Minocycline and Interferon-β 27.4 Future Perspectives 27.5 Conclusion References