دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: Stephen H. Curry, Robin Whelpton سری: ISBN (شابک) : 111958843X, 9781119588436 ناشر: Wiley سال نشر: 2022 تعداد صفحات: 478 [480] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 Mb
در صورت تبدیل فایل کتاب Drug Disposition and Pharmacokinetics: Principles and Applications for Medicine, Toxicology and Biotechnology به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مواد مخدر و فارماکوکینتیک: اصول و کاربردها برای پزشکی، سم شناسی و بیوتکنولوژی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Drug Disposition and Pharmacokinetics به روزترین نسخه از یک مرجع برجسته در زمینه دارو و فارماکوکینتیک در این نسخه جدید و کاملاً تجدید نظر شده Drug Disposition and Pharmacokinetics: Principles and Applications for Medicine, Toxicology and Biotechnology نویسندگان مقاله معتبر و معتبری ارائه می دهند. بحث جامع درباره سرنوشت مولکول های دارو در بدن و همچنین پیامدهای آن برای اثرات دارویی و بالینی. این متن یک رویکرد منحصر به فرد و متعادل ارائه می دهد که بحث در مورد عوامل فیزیکی و بیولوژیکی خاص مؤثر بر جذب، توزیع، متابولیسم و دفع داروها را با ارزیابی های ریاضی غلظت پلاسما و مایعات بدن ترکیب می کند. این کتاب دانش قبلی کمی دارد و یک مرجع ایدهآل برای متخصصان حرفهای در صنعت و همچنین محققان و دانشگاهیان است. این آخرین نسخه فصل مقدماتی جدیدی را در اختیار خوانندگان قرار میدهد، همچنین فصلهای جدیدی را که آنتیبادیهای مونوکلونال، نقش استریوشیمی در وضعیت دارو و فارماکوکینتیک، DMPK در گونههای غیر انسانی، و استفاده اخیر از هوش مصنوعی در توسعه دارو را پوشش میدهد، ارائه میکند. خوانندگان همچنین خواهند یافت: مقدمههای کاملی بر وضعیت دارو، فارماکوکینتیک، و مدلسازی فارماکوکینتیک درمانهای عمیق سینتیکهای حذف دارو و رابطه بین غلظت و اثر، از جمله مدلسازی PK-PD. از جمله پپتیدها و آنتی بادی های مونوکلونال بررسی دقیق اثرات جنسی، بارداری، سن و بیماری، و همچنین نظارت بر دارو در درمان و استفاده از هوش مصنوعی در توسعه دارو و درمان مناسب برای متخصصان و محققانی که با جنبه های علمی دارو کار می کنند. گرایش در پزشکی انسانی و دامپزشکی، سم شناسی و فارماکولوژی. Drug Disposition و Pharmacokinetics جایگاهی را در کتابخانه های دانشجویان دوره های ارشد داروسازی به دست خواهد آورد.
Drug Disposition and Pharmacokinetics The most up-to-date edition of a leading reference in drug disposition and pharmacokinetics In this new, fully-revised edition of Drug Disposition and Pharmacokinetics: Principles and Applications for Medicine, Toxicology and Biotechnology the authors deliver an authoritative and comprehensive discussion of the fate of drug molecules in the body, as well as its implications for pharmacological and clinical effects. The text offers a unique and balanced approach that combines discussion of the specific physical and biological factors affecting the absorption, distribution, metabolism, and excretion of drugs, with mathematical assessments of plasma and body fluid concentrations. The book assumes little prior knowledge and is an ideal reference for practicing professionals in industry as well as researchers and academics. This latest edition provides readers with a new introductory chapter, as well as new chapters covering monoclonal antibodies, the role of stereochemistry in drug disposition and pharmacokinetics, DMPK in non-human species, and the recent use of AI in drug development. Readers will also find: Thorough introductions to drug disposition, pharmacokinetics, and pharmacokinetic modeling In-depth treatments of the kinetics of drug elimination and the relationship between concentration and effect, including PK–PD modeling Comprehensive discussions of predictive pharmacokinetics and the disposition of biological molecules, including peptides and monoclonal antibodies Detailed examinations of the effects of sex, pregnancy, age, and disease, as well as drug monitoring in therapeutics and the use of AI in drug development and treatment Perfect for professionals and researchers working with the scientific aspects of drug disposition in human and veterinary medicine, toxicology, and pharmacology. Drug Disposition and Pharmacokinetics will earn a place in the libraries of students of senior-level courses in pharmacy.
Cover Title Page Copyright Page Contents Preface Chapter 1 Setting the Scene: Concepts, Nature of Drugs, and Quality of Results 1.1 Introduction 1.2 Concepts and terminology: disposition and pharmacokinetics 1.3 Pharmacokinetic parameters 1.3.1 Half-life 1.3.2 Clearance and apparent volume of distribution 1.3.3 Area under the plasma concentration–time curve 1.3.4 Apparent oral clearance 1.4 Time–concentration–effect relationships 1.5 Properties of drugs and xenobiotics 1.6 Quality of the data 1.6.1 Quantification of analyte concentrations 1.6.2 Timing of samples 1.6.3 Quality control and method validation 1.7 References Chapter 2 Drug Disposition and Fate 2.1 Introduction 2.2 Transport proteins 2.3 Absorption 2.3.1 Gastrointestinal tract 2.3.2 Drug transfer across the gastrointestinal tract 2.3.3 Other mucus membranes 2.3.4 Skeletal muscle 2.3.5 Skin 2.3.6 Absorption of macromolecules and nanoparticles 2.4 Distribution 2.4.1 Mechanisms of sequestration 2.4.2 Assessing the extent and location of distribution 2.4.3 Kinetics of distribution 2.5 Metabolism 2.5.1 Phase 1 metabolism 2.5.2 Phase 2 conjugations 2.5.3 Metabolism by microbiota 2.6 Excretion 2.6.1 Urine 2.6.2 Biliary excretion 2.6.3 Expired air 2.6.4 Saliva 2.6.5 Stomach and intestine 2.6.6 Breast milk 2.6.7 Other routes of excretion 2.6.8 Cycling processes 2.7 References Chapter 3 Pharmacokinetic Modelling 3.1 Introduction 3.2 Fundamental concepts 3.2.1 Apparent volume of distribution 3.2.2 Clearance 3.3 Elimination 3.3.1 First-order elimination 3.3.2 Non-linear elimination 3.4 Intravenous infusions 3.4.1 Single-compartment model with first-order elimination 3.4.2 Two-compartment model with first-order elimination 3.5 First-order input and elimination 3.5.1 Absorption 3.5.2 Multiple dosing 3.6 Areas under the plasma concentration–time curve: trapezoidal method 3.7 Statistical moment theory 3.7.1 Estimating AUMC 3.8 Bioavailability and bioequivalence 3.8.1 Non-linear kinetics 3.8.2 Effect of systemic availability on plasma concentration–time curves 3.8.3 Factors affecting bioavailability 3.8.4 Bioequivalence 3.9 Physiological modelling 3.9.1 Practical considerations 3.10 Population kinetics 3.11 References Chapter 4 Pharmacokinetics of Metabolism and Excretion 4.1 Introduction 4.2 Metabolite kinetics 4.2.1 Basic concepts 4.2.2 Fraction of metabolite formed 4.2.3 More complex situations 4.2.4 Effect of pre-systemic metabolism 4.2.5 Interconversion of drug and metabolite 4.2.6 Active metabolites and prodrugs 4.2.7 Kinetics of formed and preformed metabolites 4.3 Kinetics of urinary excretion 4.3.1 Renal clearance 4.3.2 Effect of urine flow rate 4.3.3 Estimating renal blood flow and glomerular filtration rate 4.3.4 Specific drug examples 4.4 Excretion in faeces 4.5 References Chapter 5 Quantitative Pharmacological Relationships 5.1 Introduction 5.2 Concentration–effect relationships and dose–response curves 5.3 Concentration–effect relationships in vivo 5.4 Time-Dependent Models 5.4.1 Direct link and indirect link models 5.4.2 Temporal displacement 5.4.3 Inhomogeneity of plasma 5.4.4 Effects of unequal distribution in plasma 5.4.5 Pharmacokinetic distributional models 5.5 PK–PD modelling 5.5.1 PK–PD modelling under steady-state conditions 5.5.2 Use of effect-compartment models 5.5.3 Indirect-response models 5.5.4 Disease progression models 5.5.5 Time-related changes in pharmacodynamic parameters 5.5.6 Schedule dependence 5.5.7 Basic PK–PD versus system PK–PD 5.6 References Chapter 6 Predictive Pharmacokinetics 6.1 Introduction 6.2 Physiochemical properties 6.2.1 Druggability 6.2.2 Drug-likeness 6.2.3 Dissolution studies 6.3 Metabolic stability 6.3.1 Microsomal intrinsic clearance 6.3.2 Hepatocytes 6.3.3 Recombinant human cytochromes 6.4 Plasma protein and tissue binding and blood/plasma ratios 6.4.1 Plasma protein binding 6.4.2 Erythrocyte concentrations 6.5 Hepatic clearance 6.5.1 Hepatic intrinsic clearance 6.5.2 Effect of plasma protein binding on elimination kinetics 6.6 Experimental methods of assessing transfer across biological membranes 6.6.1 Cell culture 6.6.2 Parallel artificial membrane permeability assay 6.6.3 Ussing chambers 6.6.4 Intestinal sacs 6.6.5 In vivo/in situ studies 6.7 Allometric scaling 6.7.1 Refinements to allometric scaling 6.7.2 Practical aspects of allometry 6.7.3 Method of Wajima 6.8 In silico predictions and PBPK modelling 6.9 Microdosing studies 6.10 Translational science 6.11 References Chapter 7 Disposition of Peptides and Other Biological Molecules 7.1 Introduction 7.2 Chemical aspects 7.2.1 PEGylation 7.3 Assay methods 7.4 Pharmacokinetics 7.4.1 Administration and dosage 7.4.2 Bioequivalence and biosimilarity 7.4.3 Distribution 7.4.4 Metabolism 7.4.5 Excretion 7.5 Plasma kinetics and pharmacodynamics 7.6 Examples of particular interest 7.6.1 Botulinum toxins 7.6.2 Cholecystokinins 7.6.3 Ciclosporin 7.6.4 Cocaine hydrolases 7.6.5 Erythropoietin 7.6.6 Heparin 7.6.7 Mipomersen 7.6.8 Somatotropin 7.6.9 Vasopressin and desmopressin 7.7 References Chapter 8 Monoclonal Antibodies 8.1 Introduction 8.2 Nomenclature 8.3 Circulation of monoclonal antibodies 8.3.1 Convection 8.3.2 Neonatal Fc receptor 8.3.3 Binding to soluble target antigens 8.4 Pharmaceutical and DMPK aspects 8.4.1 Routes of administration 8.4.2 Distribution and apparent volume of distribution 8.4.3 Metabolism and excretion 8.4.4 Pharmacokinetics 8.4.5 Individual and population pharmacokinetics 8.5 Development of orally administered monoclonal antibodies 8.6 Optimizing pharmacokinetic and pharmacodynamic properties 8.7 Two highlighted early and durable examples 8.7.1 Trastuzumab 8.7.2 Adalimumab 8.8 PBPK modelling 8.9 Antibody–drug conjugates 8.9.1 Payloads 8.9.2 Linkers 8.9.3 Bystander killing 8.9.4 Disposition and pharmacokinetics 8.10 References Chapter 9 Drug Metabolism and Pharmacokinetics in Veterinary Sciences 9.1 Introduction 9.2 Areas of practice 9.2.1 Companion animal medicine 9.2.2 Treatment of animals of commerce 9.2.3 Zoos and wildlife preserves 9.2.4 Laboratory animal medicine 9.3 Scientific approach including allometric scaling 9.4 Information organized by pharmacokinetic processes 9.4.1 Administration 9.4.2 Absorption 9.4.3 Tissue distribution 9.4.4 Plasma protein binding and transporters 9.4.5 Metabolism 9.4.6 Excretion 9.5 Information organized by species and drugs 9.5.1 Mammals 9.5.2 Fish 9.6 Some drugs unique to veterinary science 9.7 Accidental exposure: toxicology – drugs used by humans that are dangerous to animals 9.7.1 Paracetamol in cats 9.7.2 Xanthines: chocolate in dogs 9.8 Residue analysis 9.9 References Chapter 10 Factors Affecting Plasma Concentrations: Consideration of Special Populations 10.1 Introduction 10.2 Pharmaceutical factors 10.3 Weight and obesity 10.3.1 Effects of obesity on pharmacokinetics 10.3.2 Dose adjustment in obesity 10.3.3 Oral contraceptives 10.3.4 Gastric bypass surgery 10.3.5 Psychiatric patients 10.4 Food, diet, and nutrition 10.4.1 Diet and nutrition 10.5 Time of day 10.5.1 Circadian rhythms 10.5.2 Absorption 10.5.3 The liver 10.5.4 The kidneys 10.5.5 Intravenous and other injected doses 10.5.6 Pharmacodynamics 10.6 Posture and exercise 10.6.1 Exercise 10.7 Smoking 10.8 References Chapter 11 Pharmacogenetics, Pharmacogenomics, and Precision Medicine 11.1 Introduction 11.1.1 Terminology 11.2 Methods for the study of pharmacogenetics 11.2.1 Studies in twins 11.2.2 Phenotyping and genotyping 11.3 N-Acetyltransferase 11.3.1 Isoniazid 11.3.2 Sulfonamides 11.3.3 Other drugs 11.3.4 Genotyping N-acetyltransferase 11.4 Plasma cholinesterase 11.4.1 Suxamethonium 11.5 Carboxylesterases 11.6 Cytochrome P450 polymorphisms 11.6.1 Cytochrome 2D6 11.6.2 Cytochrome 2C9 11.6.3 Cytochrome 2C19 11.6.4 Cytochromes 3A4/5 11.6.5 Other cytochrome P450 polymorphisms 11.7 Glucose-6-phosphate dehydrogenase 11.7.1 Glucose-6-phosphate dehydrogenase deficiency 11.7.2 Triggering 11.7.3 Effects on pharmacokinetics 11.8 Alcohol dehydrogenase and acetaldehyde dehydrogenase 11.9 Thiopurine methyltransferase 11.10 Phase 2 enzymes 11.10.1 UDP-glucuronosyltransferases 11.10.2 Sulfotransferases 11.10.3 Glutathione transferases 11.11 Transporters 11.12 Pharmacodynamic differences 11.13 Ethnicity 11.14 Personalized medicine 11.15 References Chapter 12 Effects of Sex and Pregnancy on Drug Disposition and Pharmacokinetics 12.1 Introduction 12.1.1 Studies in animals 12.2 Effect of sex on human drug disposition and pharmacokinetics 12.2.1 Absorption and bioavailability 12.2.2 Distribution 12.2.3 Metabolism 12.2.4 Excretion 12.2.5 Effects 12.3 Pregnancy 12.3.1 Physiological and biochemical changes 12.3.2 Drug-metabolizing enzymes 12.3.3 Transporters 12.3.4 The foetus 12.4 Hormonal effects 12.4.1 Human oestrogen receptors 12.5 Quality of the data 12.6 References Chapter 13 Developmental Pharmacology and Age-related Phenomena 13.1 Introduction 13.2 Scientific and regulatory environment in regard to younger and older patients 13.3 Terminology 13.4 Dose adjustment 13.4.1 Body surface area 13.4.2 Relative organ size 13.5 Anatomical and physiological differences 13.5.1 Tissue distribution 13.5.2 Absorptive processes 13.5.3 Protein binding 13.5.4 The blood–brain barrier 13.5.5 Liver function 13.5.6 Renal function 13.5.7 Metabolic and pharmacodynamic phenomena 13.6 Age groups 13.6.1 Neonates and children 13.6.2 Elderly 13.7 Further Examples 13.8 References Chapter 14 Effects of Disease on Drug Disposition and Pharmacokinetics 14.1 Introduction 14.2 Gastrointestinal disorders and drug absorption 14.2.1 General considerations 14.2.2 Inflammatory conditions of the intestines and coeliac disease 14.3 Congestive heart failure 14.3.1 Altered intestinal function 14.3.2 Altered liver blood flow 14.3.3 Altered rate of metabolism – aminopyrine 14.3.4 Altered route of metabolism – glyceryl trinitrate 14.3.5 Altered clearance – mexilitine 14.3.6 Congestive heart failure plus renal problems – toborinone 14.3.7 Decompensated and treated CHF – torasemide 14.3.8 Oedema 14.4 Liver disease 14.4.1 Pathophysiology 14.4.2 Liver blood flow, binding to plasma proteins, and intrinsic hepatic clearance 14.4.3 Methods of investigation 14.4.4 Selected examples 14.4.5 Drug Effects 14.5 Renal impairment 14.5.1 General considerations 14.5.2 Mathematical approach 14.5.3 Selected examples 14.6 Thyroid disease 14.6.1 General considerations 14.6.2 Examples 14.7 Respiratory Disorders 14.7.1 Methodological issues 14.7.2 Fluticasone 14.7.3 Three further examples 14.8 Assessing pharmacokinetics in special populations 14.9 References Chapter 15 Role of Stereochemistry in Drug Disposition and Pharmacokinetics 15.1 Introduction 15.1.1 Isomers 15.1.2 Enantiomers: optical isomerism 15.1.3 Cis–trans isomerism 15.1.4 Importance of stereochemistry in pharmacology 15.1.5 Racemization, inversion, and epimerization 15.2 Absorption 15.2.1 Percutaneous absorption 15.2.2 Transporters 15.3 Plasma protein binding 15.3.1 Effect of stereochemistry 15.4 Metabolism 15.4.1 Stereospecific metabolism 15.4.2 Inversion 15.4.3 Chiral to achiral conversion 15.4.4 Insertion of additional chiral centres 15.4.5 Metabolism of achiral to chiral molecules 15.5 Excretion 15.5.1 Renal clearance 15.6 Development and marketing of single isomers 15.6.1 Chiral switch 15.7 References Chapter 16 Drug Metabolism and Pharmacokinetics in Drug Interactions and Toxicity 16.1 Introduction 16.2 Drug interactions 16.2.1 Terminology 16.2.2 Time action considerations 16.2.3 Absorption 16.2.4 Distribution 16.2.5 Metabolism 16.2.6 Excretion 16.2.7 Homergic interactions 16.2.8 When drug interactions are important 16.2.9 Desirable interactions 16.2.10 Predicting the risk of drug interactions with new chemical entities 16.3 Toxicity 16.3.1 Terminology 16.3.2 Dose–response and time action with special reference to toxicology 16.3.3 Toxicity associated with prolonged exposure to therapeutic doses 16.3.4 Safety studies in new drug discovery 16.3.5 Selected examples 16.4 References Chapter 17 Drug Monitoring in Therapeutics 17.1 Introduction 17.2 General considerations 17.2.1 Samples and sampling 17.2.2 What should be measured? 17.2.3 Timing of sample collection 17.2.4 Analyses 17.2.5 Reference ranges 17.3 Specific Examples 17.3.1 Antiasthmatic drugs 17.3.2 Anticoagulant drugs 17.3.3 Anticonvulsant drugs 17.3.4 Antidepressant drugs 17.3.5 Antimicrobial agents 17.3.6 Antipsychotic drugs 17.3.7 Cardioactive drugs 17.3.8 Immunosuppressive drugs 17.3.9 Lithium 17.3.10 Therapeutic antibodies 17.3.11 Thyroxine 17.4 Dose adjustment 17.4.1 Gentamicin 17.4.2 Phenytoin 17.5 References Chapter 18 From Antiquity to the Age of Artificial Intelligence: Reflections on the Past, Present, and Future of Drug Disposition and Pharmacokinetics 18.1 Drug disposition: Historical aspects 18.1.1 Pharmacodynamics 18.1.2 Quantification of drugs 18.1.3 Pharmacokinetic modelling 18.1.4 Drug discovery and development 18.2 Computerization and automation 18.2.1 Computer-aided drug discovery 18.3 Intelligence, intellect, and artificial intelligence in DMPK 18.3.1 Natural and artificial intelligence 18.4 Where are we now and what does the future hold? 18.5 Postscript 18.6 References Index EULA