دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Inamuddin, Altalhi. Tariq A., Cruz. Jorddy N., Refat. Moamen Salah El-Deen, , Tariq Altalhi, Jorddy N. Cruz, Moamen Salah El-Deen Refat سری: ISBN (شابک) : 9781394166282 ناشر: John Wiley & Sons, Incorporated سال نشر: 2022 تعداد صفحات: زبان: English فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Drug Design Using Machine Learning به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی دارو با استفاده از یادگیری ماشینی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
طراحی دارو با استفاده از یادگیری ماشینی استفاده از الگوریتمهای یادگیری ماشین در کشف دارو در سالهای اخیر تسریع شده است و این کتاب مروری عمیق از این زمینه هنوز در حال تکامل ارائه میدهد. هدف این کتاب گردآوری چندین فصل است که به عنوان مروری بر استفاده از یادگیری ماشین و هوش مصنوعی در توسعه دارو عمل میکنند. فصلهای اولیه تعاملات دارو-هدف را از طریق یادگیری ماشین برای بهبود تحویل دارو، مراقبتهای بهداشتی و سیستمهای پزشکی مورد بحث قرار میدهند. فصول بعدی همچنین موضوعاتی در مورد استفاده مجدد از دارو از طریق یادگیری ماشینی، طراحی دارو، و در نهایت در مورد ترکیبات دارویی تجویز شده برای بیماران مبتلا به بیماری های متعدد یا پیچیده ارائه می کند. این بررسی اجمالی عالی خلاصهای از کاربردهای یادگیری ماشین و هوش مصنوعی برای پیشرفت داروها را ارائه میدهد. جزئیات استفاده از تشخیص مولکولی برای توسعه دارو از طریق مدلهای مختلف ریاضی. رویکردهای کلاسیک و همچنین مبتنی بر یادگیری ماشینی را برای مطالعه تداخلات دارویی هدف در زمینه کشف دارو برجسته می کند. تکنیک های کامپیوتری را برای پیش بینی اثربخشی و سمیت دارو بررسی می کند. مخاطبین این کتاب برای متخصصان فناوری اطلاعات، کارگران صنعت داروسازی، مهندسان، محققان دانشگاه، پزشکان و کارگران آزمایشگاهی که علاقه شدیدی به حوزه یادگیری ماشینی و رویکردهای هوش مصنوعی به کار رفته در پیشرفتهای دارویی دارند، مفید خواهد بود.
DRUG DESIGN USING MACHINE LEARNING The use of machine learning algorithms in drug discovery has accelerated in recent years and this book provides an in-depth overview of the still-evolving field. The objective of this book is to bring together several chapters that function as an overview of the use of machine learning and artificial intelligence applied to drug development. The initial chapters discuss drug-target interactions through machine learning for improving drug delivery, healthcare, and medical systems. Further chapters also provide topics on drug repurposing through machine learning, drug designing, and ultimately discuss drug combinations prescribed for patients with multiple or complex ailments. This excellent overview Provides a broad synopsis of machine learning and artificial intelligence applications to the advancement of drugs; Details the use of molecular recognition for drug development through various mathematical models; Highlights classical as well as machine learning-based approaches to study target-drug interactions in the field of drug discovery; Explores computer-aided technics for prediction of drug effectiveness and toxicity. Audience The book will be useful for information technology professionals, pharmaceutical industry workers, engineers, university researchers, medical practitioners, and laboratory workers who have a keen interest in the area of machine learning and artificial intelligence approaches applied to drug advancements.
Cover Half-Title Page Series Page Title Page Copyright Page Contents Preface 1 Molecular Recognition and Machine Learning to Predict Protein-Ligand Interactions 1.1 Introduction 1.1.1 Molecular Recognition 1.2 Molecular Docking 1.2.1 Conformational Search Algorithm 1.2.2 Scoring Function with Conventional Methods 1.3 Machine Learning 1.3.1 Machine Learning in Molecular Docking 1.3.2 Machine Learning Challenges in Molecular Docking 1.4 Conclusions References 2 Machine Learning Approaches to Improve Prediction of Target-Drug Interactions 2.1 Machine Learning Revolutionizing Drug Discovery 2.1.1 Introduction 2.1.2 Virtual Screening and Rational Drug Design 2.1.3 Small Organic Molecules and Peptides as Drugs 2.2 A Brief Summary of Machine Learning Models 2.2.1 Support Vector Machines (SVM) 2.2.2 Random Forests (RF) 2.2.3 Gradient Boosting Decision Tree 2.2.4 K-Nearest Neighbor (KNN) 2.2.5 Neural Network and Deep Learning 2.2.6 Gaussian Process Regression 2.2.7 Evaluating Regression Methods 2.2.8 Evaluating Classification Methods 2.3 Target Validation 2.3.1 Ligand Binding Site Prediction (LBS) 2.3.2 Classical Approaches 2.3.3 Machine Learning Approaches 2.3.3.1 SVM-Based Approaches 2.3.3.2 Random Forest–Based Approaches 2.3.3.3 Deep Learning–Based Approaches 2.4 Lead Discovery 2.4.1 The Relevance of Predict Binding Affinity 2.4.2 The Concept of Docking 2.4.3 The Scoring Function 2.4.4 Developing of Novels Scoring Functions by Machine Learning 2.4.4.1 Random Forests 2.4.4.2 Support Vector Machines 2.4.4.3 Neural Networks 2.4.4.4 Gradient Boosting Decision Tree 2.5 Lead Optimization 2.5.1 QSAR and Proteochemometrics 2.5.2 Machine Learning Algorithms in Deriving Descriptors 2.6 Peptides in Pharmaceuticals 2.6.1 Peptide Natural and Synthetic Sources 2.6.2 Applications and Market for Peptides-Based Drugs 2.6.3 Challenges to Become a Peptide Into a Drug 2.6.4 Improving Peptide Drug Development Using Machine Learning Techniques 2.7 Conclusions References 3 Machine Learning Applications in Rational Drug Discovery 3.1 Introduction 3.2 The Drug Development and Approval Process 3.3 Human-AI Partnership 3.4 AI in Understanding the Pathway to Assess the Side Effects 3.4.1 Traditional Versus New Strategies in Drug Discovery 3.4.2 Target Identification and Authentication 3.4.3 Searching the Hit and Lead Molecules with the Help of AI 3.4.4 Discretion of a Population for Medical Trials Using AI 3.5 Predicting the Side Effects Using AI 3.6 AI for Polypharmacology and Repurposing 3.7 The Challenge of Keeping Drugs Safe 3.8 Conclusion Resources References 4 Deep Learning for the Selection of Multiple Analogs 4.1 Introduction 4.2 Goals of Analog Design 4.3 Deep Learning in Drug Discovery 4.4 Chloroquine Analogs 4.5 Deep Learning in Medical Field 4.5.1 Scientific Study of Skin Diseases 4.5.2 Anatomical Laparoscopy 4.5.3 Angiography 4.5.4 Interpretation of Wound 4.5.5 Molecular Docking 4.5.6 Breast Cancer Detection 4.5.7 Polycystic Organs 4.5.8 Bone Tissue 4.5.9 Interaction Drug-Target 4.5.10 Pancreatic Issue Prediction 4.5.11 Prediction of Carcinoma in Cells 4.5.12 Determining Parkinson’s 4.5.13 Segregating Cells 4.6 Conclusion References 5 Drug Repurposing Based on Machine Learning 5.1 Introduction 5.2 Computational Drug Repositioning Strategies 5.2.1 Drug-Based Strategies 5.2.2 Disease-Based Strategies 5.3 Machine Learning 5.4 Data Resources Used for Computational Drug Repositioning Through Machine Learning Techniques 5.5 Machine Learning Approaches Used for Drug Repurposing 5.5.1 Network-Based Approaches 5.5.2 Text Mining-Based Approaches 5.5.3 Semantics-Based Approaches 5.6 Drugs Repurposing Through Machine Learning-Case Studies 5.6.1 Psychiatric Disorders 5.6.2 Alzheimer’s Disease 5.6.3 Drug Repurposing for Cancer 5.6.4 COVID-19 5.6.5 Herbal Drugs 5.7 Conclusion References 6 Recent Advances in Drug Design With Machine Learning 6.1 Introduction 6.2 Categorization of Machine Learning Tasks 6.2.1 Supervised Learning 6.2.2 Unsupervised Learning 6.2.3 Semisupervised Learning 6.2.4 Reinforcement Learning 6.3 Machine Language-Mediated Predictive Models in Drug Design 6.3.1 Quantitative Structure-Activity Relationship Models (QSAR) 6.3.2 Quantitative Structure-Property Relationship Models (QSPR) 6.3.3 Quantitative Structure Toxicity Relationship Models (QSTR) 6.3.4 Quantitative Structure Biodegradability Relationship Models (QSBR) 6.4 Machine Learning Models 6.4.1 Artificial Neural Networks (ANNs) 6.4.2 Self-Organizing Map (SOM) 6.4.3 Multilayer Perceptrons (MLPs) 6.4.4 Counter Propagation Neural Networks (CPNN) 6.4.5 Bayesian Neural Networks (BNNs) 6.4.6 Support Vector Machines (SVMs) 6.4.7 Naive Bayesian Classifier 6.4.8 K Nearest Neighbors (KNN) 6.4.9 Ensemble Methods 6.4.9.1 Boosting 6.4.9.2 Bagging 6.4.10 Random Forest 6.4.11 Deep Learning 6.4.12 Synthetic Minority Oversampling Technique 6.5 Machine Learning and Docking 6.5.1 Scoring Power 6.5.2 Ranking Power 6.5.3 Docking Power 6.5.4 Predicting Docking Score Using Machine Learning 6.6 Machine Learning in Chemoinformatics 6.7 Challenges and Limitations for Machine Learning in Drug Discovery 6.8 Conclusion and Future Perspectives References 7 Loading of Drugs in Biodegradable Polymers Using Supercritical Fluid Technology 7.1 Introduction 7.2 Supercritical Fluid Technology 7.2.1 Supercritical Fluids 7.2.2 Physicochemical Properties 7.2.3 Carbon Dioxide 7.3 Biodegradable Polymers 7.3.1 Main Biologically-Derived Polymers Used With SCF Technologies 7.3.1.1 Cellulose 7.3.1.2 Chitosan 7.3.1.3 Alginate 7.3.1.4 Collagen 7.3.2 Main Synthetic Polymers Used With SCF Technologies 7.3.2.1 Polylactic Acid (PLA) 7.3.2.2 Poly (Lactic-co-Glycolic Acid) (PLGA) 7.3.2.3 Polycaprolactone (PCL) 7.3.2.4 Poly (Vinyl Alcohol) (PVA) 7.4 Drug Delivery 7.4.1 Types of Drugs 7.4.2 Influence of Experimental Conditions on the Drug Loading 7.5 Conclusion Acknowledgments References 8 Neural Network for Screening Active Sites on Proteins 8.1 Introduction 8.2 Structural Proteomics 8.2.1 PPIs 8.2.2 Active Sites in Proteins 8.3 Gist Techniques to Study the Active Sites on Proteins 8.3.1 In Vitro 8.3.1.1 Affinity Purification 8.3.1.2 Affinity Chromatography 8.3.1.3 Coimmunoprecipitation 8.3.1.4 Protein Arrays 8.3.1.5 Protein Fragment Complementation 8.3.1.6 Phage Display 8.3.1.7 X-Ray Crystallography 8.3.1.8 Nuclear Magnetic Resonance Spectroscopy (NMR) 8.3.2 In Vivo 8.3.2.1 In-Silico Two-Hybrid 8.3.3 In-Silico and Neural Network 8.3.3.1 Data Base 8.3.3.2 Sequence-Based Approaches 8.3.3.3 Structure-Based Approaches 8.3.3.4 Phylogenetic Tree 8.3.3.5 Gene Fusion 8.4 Neural Networking Algorithms to Study Active Sites on Proteins 8.4.1 PDBSiteScan Program 8.4.2 Patterns in Nonhomologous Tertiary Structures (PINTS) 8.4.3 Genetic Active Site Search (GASS) 8.4.4 Site Map 8.4.5 Computed Atlas of Surface Topography of Proteins (CASTp) 8.5 Conclusion References 9 Protein Redesign and Engineering Using Machine Learning 9.1 Introduction 9.2 Designing Sequence-Function Model Through Machine Learning 9.2.1 Training of Model and Evaluation 9.2.2 Representation of Proteins by Vector 9.2.3 Guiding Exploration by Employing Sequence-Function Prediction 9.3 Features Based on Energy 9.4 Features Based on Structure 9.5 Prediction of Thermostability of Protein with Single Point Mutations 9.6 Selection of Features 9.6.1 Extraction of Features 9.7 Force Field and Score Function 9.8 Machine Learning for Prediction of Hot Spots 9.8.1 Support Vector Machines 9.8.2 Nearest Neighbor 9.8.3 Decision Trees 9.8.4 Neural Networks 9.8.5 Bayesian Networks 9.8.6 Ensemble Learning 9.9 Deep Learning—Neural Network in Computational Protein Designing 9.10 Machine Learning in Engineering of Proteins 9.11 Conclusion References 10 Role of Transcriptomics and Artificial Intelligence Approaches for the Selection of Bioactive Compounds 10.1 Introduction 10.2 Types of Bioactive Compounds 10.2.1 Phenolic Acids 10.2.2 Stilbenes 10.2.3 Ellagitannins 10.2.4 Flavonoids 10.2.5 Proanthocyanidin 10.2.6 Vitamins 10.2.7 Bioactive Peptides 10.3 Transcriptomics Approaches for the Selection of Bioactive Compounds 10.3.1 Hybrid Transcriptome Sequencing 10.3.2 Microarray 10.3.3 RNA-Seq 10.4 Artificial Intelligence Approaches for the Selection of Bioactive Compounds 10.4.1 Machines Learning (ML) Approach for the Selection of Bioactive Compounds 10.4.1.1 Evolution of Machine Learning to Deep Learning 10.4.1.2 Virtual Screening 10.4.1.3 Recent Advances in Machine Learning 10.4.1.4 Deep Learning 10.4.2 De Novo Synthesis of Bioactive Compounds 10.4.2.1 Application Examples of De Novo Design 10.4.3 Applications of Machine Learning and Deep Learning 10.4.3.1 Application of Deep Learning in Compound Activity and Property Prediction 10.4.3.2 Application of Deep Learning in Biological Imaging Analysis 10.4.3.3 Future Development of Deep Learning in Drug Discovery 10.5 Applications of Transcriptomic and Artificial Intelligence Techniques for Drug Discovery 10.6 Conclusion and Perspectives References 11 Prediction of Drug Toxicity Through Machine Learning 11.1 Introduction 11.2 Drug Discovery 11.2.1 Target Identification 11.2.2 Lead Discovery: Preclinical 11.2.3 Medicinal Chemistry: Preclinical 11.2.4 In Vitro Studies 11.2.5 In Vivo Studies 11.2.6 Clinical Trials 11.2.7 Food and Drug Administration Approval 11.3 Drug Design Through New Techniques 11.4 Machine Learning as a Science 11.4.1 Supervised Machine Learning 11.4.2 Unsupervised Machine Learning 11.5 Reinforcement Machine Learning 11.6 AI Application in Drug Design 11.7 Machine Learning Methods Used in Drug Discovery 11.7.1 Support Vector Machines 11.7.2 Random Forest 11.7.3 Multilayer Perception (MLP) 11.8 Deep Learning (DL) 11.9 Drug Design Applications 11.10 Drug Discovery Problems 11.10.1 Prognostic Biomarkers 11.10.2 Digital Pathology 11.11 Conclusion References 12 Artificial Intelligence for Assessing Side Effects 12.1 Introduction 12.2 Background 12.3 Traditional Approach to Pharmacovigilance and Its Limitations 12.4 Role of Artificial Intelligence in Pharmacological Profiling for Safety Assessment 12.5 Artificial Intelligence for Assessing Side Effects 12.6 Conclusion References Index