دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Harish Dureja, Narasimha Murthy, Peter Wich, Kamal Dua سری: ISBN (شابک) : 0323996167, 9780323996167 ناشر: Academic Press سال نشر: 2022 تعداد صفحات: 525 [527] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 14 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Drug Delivery Systems for Metabolic Disorders به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های دارورسانی برای اختلالات متابولیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
سیستم های تحویل دارو برای اختلالات متابولیک جدیدترین پیشرفت ها را در مورد تحویل هدفمند داروها برای مقابله با اختلالات متابولیک به روشی ایمن، سازگار و مستمر ارائه می دهد. این کتاب پیشرفتهای اخیر در سیستمهای پیشرفته دارورسانی در اختلالات متابولیک مختلف، از جمله اختلال در متابولیسم پروتئین، چربی، کربوهیدرات و هورمون و اختلالات لیزوزومی و میتوکندری را پوشش میدهد. این مقدمه مختصری از اختلالات متابولیک، همراه با تمرکز بر چشم انداز فعلی و روندها در درک آسیب شناسی بیماری با استفاده از مدل های مختلف in vitro و in vivo مورد نیاز برای کاربردهای بالینی و پیشرفت های درمانی جدید ارائه می دهد.
< p>هر فصل بعدی سیستم های دارورسانی اختصاص داده شده به بیماری های متابولیک ناشی از اختلال در متابولیسم پروتئین، لیپید، کربوهیدرات و هورمون را پوشش می دهد. سپس، به بررسی اختلالات ذخیره سازی لیزوزومی و کاربردهای فیتوداروها در این زمینه می پردازد. این مرجع عالی برای محققان علم داروسازی است که علاقه مند به توسعه درمان های جدید برای بیماری های متابولیک هستند.Drug Delivery Systems for Metabolic Disorders presents the most recent developments on the targeted delivery of drugs to deal with metabolic disorders in a safe, compliant and continuous way. The book covers recent developments in advanced drug delivery systems in various metabolic disorders, including disturbances in protein, lipid, carbohydrate and hormone metabolism and lysosomal and mitochondrial disorders. It provides a brief introduction to metabolic disorders, along with a focus on the current landscape and trends in understanding disease pathology using different in vitro and in vivo models required for clinical applications and developments of new therapeutics.
Each subsequent chapter covers drug delivery systems dedicated to metabolic diseases caused by disturbances in protein, lipid, carbohydrate and hormone metabolism. Then, it moves on to cover lysosomal storage disorders and applications of phytopharmaceuticals in this context. This is the perfect reference for researchers in pharmaceutical science who are interested in developing new treatments for metabolic diseases.
Front Cover Drug Delivery Systems for Metabolic Disorders Copyright Page Contents List of contributors About the editors 1 Introduction to metabolic disorders 1.1 Metabolic disorders due to deregulation of protein/amino acid metabolism 1.1.1 Protein metabolism disorders 1.1.1.1 Amyloidosis 1.1.1.2 Kwashiorkor 1.1.1.3 Porphyria 1.1.1.4 Erythropoietic uroporphyrin 1.1.2 Amino acid metabolism disorders 1.1.2.1 Phenylketonuria 1.1.2.2 Tyrosinemia type II 1.1.2.3 Tyrosinemia type III 1.1.2.4 Alkaptonuria 1.1.2.5 Tyrosinemia type I 1.1.2.6 Maple syrup urine disease 1.2 Metabolic disorders due to deregulation of lipid metabolism 1.2.1 Atherosclerosis 1.2.2 Cerebrotendinous xanthomatosis 1.2.3 Sitosterolemia 1.2.4 Gaucher disease 1.2.5 Tay-Sachs disease 1.2.6 Niemann pick disease 1.2.7 Letterer-Siwe disease 1.3 Metabolic disorder due to deregulation in carbohydrate metabolism 1.3.1 Galactosemia 1.3.2 Hereditary fructose intolerance 1.3.3 Fructose 1,6-diphosphatase deficiency 1.3.4 Glycogen storage disorders 1.3.5 Hurler and Scheie syndrome 1.3.6 Hunter syndrome 1.3.7 Sanfilippo syndrome 1.4 Metabolic disorder due to disturbance in hormone metabolism 1.4.1 Hypoglycemia 1.4.2 Diabetes (hyperglycemia) 1.4.3 Hypopituitarism and hyperpituitarism 1.4.3.1 Hypopituitarism (panhypopituitarism) 1.4.4 Sheehan syndrome 1.4.5 Pituitary apoplexy 1.4.6 Hyperpituitarism 1.4.7 Hypoparathyroidism 1.4.8 Hyperparathyroidism 1.4.9 Pseudohypoparathyroidism 1.4.10 Hyperthyroidism 1.4.11 Hypothyroidism 1.5 Metabolic disorder due to deregulation in lysosomal storage disorders 1.5.1 Schindler disease 1.5.2 Faber disease 1.5.3 Sandhoff diseases 1.5.4 Pycnodysostosis 1.6 Metabolic disorder due to deregulation in mitochondrial disorders 1.6.1 Wilson disease 1.6.2 Pearson marrow syndrome 1.6.3 Leigh syndrome 1.6.4 Alpers disease 1.6.5 Batten disease References Further reading 2 Cellular and molecular mechanisms involved in metabolic disorders 2.1 Introduction 2.2 Alterations in single-minded protein-1: downstream mediator of leptin-melanocortin pathway 2.3 Link between osteocalcin deficiency and insulin resistance 2.4 Aberrations in the JAK-STAT pathway 2.5 Alteration in AMPK activity: insulin resistance and cardiovascular problems 2.6 Conclusion Acknowledgments References 3 Current practices in drug delivery for metabolic disorders 3.1 Introduction 3.2 Oral drug delivery approaches 3.3 Site-specific drug delivery approaches 3.4 Targeted drug delivery 3.5 Intelligent drug delivery 3.6 Conclusion Acknowledgments References 4 Recent developments in the treatment of amyloidosis 4.1 Introduction 4.2 The history of amyloidosis 4.3 Amyloid fibril 4.3.1 Amyloid fibrillogenesis 4.3.2 Pathogenicity of amyloid fibril 4.3.3 Classification of amyloidosis 4.3.3.1 Localized amyloidosis 4.3.3.2 Systematic amyloidosis 4.3.3.3 AL amyloidosis 4.3.3.4 AA Amyloidosis 4.3.3.5 Aß2M Amyloidosis 4.3.3.6 ATTRwt Amyloidosis 4.3.4 Hereditary systemic amyloidosis 4.3.5 Methods used for diagnosis of amyloidosis 4.3.6 Treatment of amyloidosis 4.3.6.1 AL Amyloidosis 4.3.6.2 ATTRm amyloidosis 4.3.6.3 AA Amyloidosis 4.4 Conclusion Acknowledgments References 5 Advanced drug delivery systems targeting to improve therapeutic outcomes in porphyria 5.1 Introduction 5.2 Prevalence 5.3 Pathophysiology 5.3.1 5-ALA- dehydratase-deficient porphyria 5.3.2 Acute intermittent porphyria 5.3.3 Congenital erythropoietic porphyria 5.3.4 Porphyria cutanea tarda and hepatoerythropoietic porphyria 5.3.5 Hereditary coproporphyria 5.3.6 Variegate porphyria 5.3.7 Erythropoietic protoporphyria 5.3.8 X-linked protoporphyria 5.4 Symptoms and diagnosis 5.4.1 5-ALA- dehydratase-deficient porphyria 5.4.2 Acute intermittent porphyria 5.4.3 Porphyria cutanea tarda and hepatoerythropoietic porphyria 5.4.4 Hereditary coproporphyria 5.4.5 Variegate porphyria 5.4.6 Congenital erythropoietic porphyria 5.4.7 Erythropoietic protoporphyria and X-linked protoporphyria 5.5 Treatment strategies 5.5.1 Acute intermittent porphyria 5.5.2 5-ALA- dehydratase-deficient porphyria 5.5.3 Porphyria cutanea tarda and hepatoerythropoietic porphyria 5.5.4 Hereditary coproporphyria 5.5.5 Variegate porphyria 5.5.6 Congenital erythropoietic porphyria 5.5.7 Erythropoietic protoporphyria and X-linked protoporphyria 5.6 Overview of treatment drugs and current treatment problems 5.6.1 Intravenous hemin (panhematin) 5.6.2 Chloroquine and hydroxychloroquine 5.6.3 Afamelanotide 5.6.4 Beta-carotene 5.6.5 Givosiran (GIVLAARI) 5.7 Novel therapies 5.8 Summary and conclusion References 6 Advanced drug delivery systems targeting kwashiorkor involving a disturbance in protein metabolism 6.1 Introduction 6.2 Physiological changes associated with kwashiorkor disease 6.3 Biochemical manifestations and metabolic disorders associated with kwashiorkor disease 6.4 Signs, symptoms, and clinical manifestations in kwashiorkor 6.5 Current treatment of kwashiorkor 6.6 Metabolic disturbances associated with kwashiorkor 6.7 Role of nanotechnology in drug-delivery 6.8 Different types of drug delivery vehicles 6.9 Advanced drug delivery system targeting kwashiorkor 6.10 Conclusion References 7 Advanced drug delivery systems targeting metabolic disorders: erythropoietic protoporphyria 7.1 Introduction 7.2 Etiology 7.3 Clinical features 7.3.1 Dermatologic involvement 7.3.2 Hematological involvement 7.4 Diagnosis 7.5 Pathophysiology 7.6 Genotype-phenotype correlations 7.7 Current and emerging therapies 7.7.1 Modulation of iron supply 7.7.2 Antisense oligonucleotide therapy 7.7.3 Increased light tolerance with antioxidants or stimulators of skin melanin synthesis 7.7.4 Surgery 7.7.5 Consultations 7.8 Conclusion and future perspective References 8 Combating atherosclerosis with nanodrug delivery approaches: from bench side to commercialization 8.1 Introduction 8.2 Atherosclerosis 8.2.1 Etiology 8.2.2 Pathogenesis 8.2.3 Clinical effects 8.2.4 Pharma-armamentarium and mechanistic insights 8.3 Nanoformulations for the treatment of atherosclerosis with implementation of quality by design 8.3.1 Nanoparticles 8.3.1.1 Implementation of the concept of quality by design for nanoformulations 8.3.2 Liposomes 8.3.2.1 Liposomes in treatment of atherosclerosis 8.3.2.2 Implementation of the concept of QbD in the formulation of liposomes 8.4 Dendrimers 8.4.1 Implementation of concept QbD during the formulation of dendrimer 8.5 Challenges in translating nanodrug delivery systems from bench to bedside 8.5.1 Scalability 8.5.2 Safety 8.5.3 Process optimization 8.5.4 Stability of the product 8.5.5 GRAS status of the material 8.5.6 Regulatory clearance 8.5.7 Nanoparticles 8.5.8 Liposomes 8.5.9 Dendrimer 8.6 Conclusion References 9 Advanced drug delivery systems in the management of Gaucher disease 9.1 History 9.2 Epidemiology 9.3 Etiology 9.4 Pathogenesis 9.5 Clinical classification of Gaucher disease 9.6 Management of Gaucher disease 9.6.1 Baseline management 9.6.2 Disease-specific management 9.6.2.1 Enzyme replacement therapies 9.6.2.1.1 Liposome encapsulated GCase 9.6.2.1.2 RBCs encapsulated GCase 9.6.2.1.3 Micro-carriers loaded with GCase 9.6.2.2 Substrate reduction therapies 9.6.3 Other specific treatments 9.6.3.1 Pharmacological chaperone therapies 9.6.3.1.1 Iminosugars 9.6.3.1.2 Ambroxol 9.6.3.1.3 Noninhibitory chaperone 9.6.3.2 Histone deacetylase inhibitors 9.6.3.3 Gene therapy 9.6.3.4 Bone marrow transplant and total joint replacement 9.6.3.5 Splenectomy 9.7 Conclusion References 10 Advanced drug delivery systems focusing the metabolic disorders due to deregulation of lipid metabolism: Niemann Pick Di... 10.1 Introduction 10.1.1 Lipid metabolic disorder 10.2 Neimann’s Pick disease 10.2.1 Common symptoms of Neimann’s disease 10.3 Etiology 10.3.1 The molecular biology underlying NP-C pathophysiology 10.3.2 Lipid trafficking and NPC1: cholesterol transport 10.3.3 NPC protein function: NPC1 & NPC2 10.3.4 Diagnosis 10.3.5 History taking and clinical examination 10.3.6 Laboratory findings 10.3.7 Genetic testing 10.3.8 Pathophysiology of sphingomyelinase deficiency Niemann’s pick disease 10.3.9 Niemann’s Pick disease type A 10.3.10 Niemann’s Pick disease type B 10.3.11 Niemann’s Pick disease type C 10.3.12 Regular laboratory testing 10.3.13 Diagnostic biomarkers 10.3.14 Plasma oxysterols 10.3.15 Plasma lysosphingolipids 10.3.16 Management of NPDs 10.3.17 Letterer-Siwe disease 10.3.18 Sign and symptoms 10.3.19 Pathophysiology of Letterer Siwe disease 10.4 Stage 1: early lesion’s phase 10.5 Stage 2: fibrous phase 10.6 Stage 3: extra lesion phase 10.7 Diagnosis Letterer Siwe disease 10.7.1 Physical diagnosis 10.7.2 Laboratory diagnosis 10.7.3 Epidemiology 10.7.4 Treatment 10.7.5 Novel drug delivery systems for treatment of Niemann’s Pick disease and Letterer-Siwe disease 10.7.6 Resealed erythrocytes 10.7.7 Liposomes 10.7.8 Microcapsules 10.7.9 Nanocarriers 10.8 Prospects 10.9 Conclusion References 11 Genetic disease and Niemann-Pick disorders: novel treatments and drug delivery systems 11.1 Introduction to genetic disorders 11.2 Classification of inherited metabolic disorders 11.3 Physiology of lipid metabolism and diseases associated with lipid metabolism 11.4 Essential aspects of Niemann-Pick disease: prevalence, pathophysiology, diagnosis, and symptoms 11.5 Current therapeutic strategies to treat Niemann-Pick disease 11.6 Problems associated with the current therapeutic strategies to treat Niemann-Pick disease 11.7 Possible novel drug delivery systems to improve therapeutic efficacy in Niemann-Pick disease References 12 Novel 3D printing drug delivery system for the prevention and treatment of Atherosclerosis 12.1 Importance of 3D printing drug delivery systems 12.2 Pathophysiology of atherosclerosis 12.3 Drugs used for the prevention and treatment of atherosclerosis 12.4 Problems with current oral drug delivery 12.5 Customized 3D printed dosage forms for atherosclerosis and associated diseases 12.6 Conclusion References 13 Advanced drug delivery systems to treat Huntington’s disease: challenges and opportunities 13.1 Introduction 13.2 Global prevalence and economic burden 13.3 Pathophysiology 13.3.1 Genetic factors 13.3.2 Mitochondrial dysfunction 13.3.3 Oxidative stress 13.3.4 Neurodegeneration 13.4 Pharmacological management of Huntington’s disease 13.5 Herbal therapy 13.6 Challenges associated with conventional therapy and the need for advanced drug delivery systems 13.6.1 Nanoemulsions 13.6.1.1 Method of preparation of nanoemulsions 13.6.2 Self-emulsifying drug delivery system 13.6.2.1 Advantages of self-emulsifying drug delivery system over other drug delivery systems 13.6.2.2 Mechanism of self-emulsification, dissolution enhancement, and drug transport by self-emulsifying drug delivery system 13.6.3 Liposomes 13.6.4 Polymeric micelles 13.6.5 Nanostructured lipid carriers 13.6.6 Solid lipid nanoparticles 13.7 Conclusion and perspectives References 14 Advanced drug delivery systems for targeting obesity 14.1 Introduction 14.2 Reason for weight gain 14.3 Obesity management 14.4 Conventional anti-obesity treatments 14.5 Advanced drug delivery systems 14.5.1 Nanoparticle 14.5.2 Metallic nanoparticles 14.5.3 Solid lipid nanoparticles 14.5.4 Liposomes 14.5.5 Microneedles 14.5.6 Nanoemulsion 14.5.7 Gene-based therapy 14.5.8 Interleukins 14.6 Conclusion and future prospectus References 15 Advanced drug delivery systems for treatment of diabetes mellitus 15.1 Introduction 15.2 Antidiabetic medication-related complications 15.3 Possibilities provided by the various Novel drug delivery systems 15.4 Development and designing of various advanced drug delivery systems for diabetes treatment 15.4.1 Particulate transport system 15.4.2 Microparticulate systems 15.4.3 Nanoparticulate systems 15.4.4 Vesicular system 15.4.4.1 Liposomes 15.4.4.2 Niosomes 15.4.5 Transdermal drug delivery systems 15.4.5.1 Employment of microneedle in patch 15.4.5.2 Gelation and hydroxyapatite fabricated bioceramic composite microneedle 15.4.5.3 Double-layered, bullet-shaped microneedle with swellable tips patch 15.4.5.4 Biodegradable alginate and hyaluronate polymer microneedle patch 15.4.5.5 Poly- γ-glutamic acid microneedles with supporting structure 15.4.5.6 Alginate and maltose microneedle patch 15.4.6 Transdermal delivery systems incorporated with biosensor 15.4.6.1 Swellable microneedle patch in interstitial fluid extraction for glucose metabolic analysis 15.4.6.2 Patch-type 3D stainless steel microneedle array enzyme-free glucose biosensor 15.4.6.3 A composite nanostructured surface electrochemical glucose sensor 15.4.6.4 The ultra-miniaturization planar amperometric glucose sensor 15.4.6.5 Lab-on-chip with triboelectric liquid volume sensor 15.4.7 Point of care therapy 15.4.7.1 H2O2-responsive polymeric vesicle with microneedle 15.4.7.2 Insulin-loaded and H2O2-responsive mesoporous silica nanoparticle integrated microneedle patch 15.4.7.3 Sweat-based electrochemical patch with thermoresponsive microneedle 15.4.7.4 Hypoxia and H2O2 dual-sensitive polymersome based vesicle smart insulin patch 15.4.8 Employment of technologies for carrier, entrapment, penetration, and release 15.4.8.1 Permeation enhancement via proniosomal gel entrapment 15.4.8.2 Proniosome carbopol-based transgel system 15.4.8.3 Transferosomal gel with the chemical “iodophor” 15.4.8.4 Microemulsion gel 15.4.8.5 Transdermal nanoemulsion encapsulation 15.4.8.6 Nanostructured lipid carriers transdermal system 15.4.8.7 Hyaluronic acid encapsulated CuS gel-mediated near-infrared laser nanosystem 15.4.8.8 Choline and geranate (CAGE) deep eutectic solvent transdermal delivery vehicle 15.4.8.9 Amidated pectin hydrogel matrix patch 15.4.8.10 HPMC and PVA based transdermal patch 15.5 Prospects and conclusion References 16 Advanced drug delivery system in the treatment of hyperglycemia and hypoglycemia 16.1 Introduction 16.1.1 Carbohydrate metabolism disorders 16.1.2 Galactose and fructose metabolism disorders 16.1.3 Glycogen storage disorders 16.1.4 Glucose transport disorder 16.1.5 Congenital disorders of glycosylation 16.1.6 Glucose metabolism disorders 16.1.6.1 Type 1 diabetes mellitus 16.1.6.2 Type 2 diabetes mellitus 16.1.6.3 Gestational diabetes mellitus 16.2 Conventional treatment for glucose metabolism disorders 16.2.1 Insulin therapies 16.2.2 Herbal treatment for diabetes mellitus 16.3 Alternative approaches to diabetes 16.3.1 Dietary fibers 16.3.2 Minerals used in the treatment of hyperglycemia 16.4 Nanomaterials for treatment of diabetes 16.4.1 Oral administration 16.4.2 Inhalations 16.4.3 Nano-pumps 16.4.4 Artificial pancreas 16.5 Advances in insulin delivery 16.6 Conclusion and future perspectives References 17 Emerging drug delivery in the treatment of hyperpituitarism and hypopituitarism 17.1 Introduction 17.1.1 Pituitary gland (hypophysis) 17.1.2 Hormones of pituitary gland 17.1.3 Human growth hormone or somatotropin 17.1.4 Thyroid-stimulating hormone or thyrotropin 17.1.5 Prolactin or mamotrophin hormone or luteotrophic hormone 17.1.6 Follicle-stimulating hormone 17.1.7 Luteinizing hormone 17.1.8 Adrenocorticotropic hormone 17.1.9 Melanocyte-stimulating hormone 17.1.10 Antiduretic hormone or vasopressin or pitressin 17.1.11 Oxytocin (OT, Pitocin) 17.2 Treatment of hypopituitarism and hyperpituitarism 17.2.1 Treatment of hypopituitarism 17.2.1.1 Adrenocorticotropic hormone replacement therapy 17.2.1.2 Thyroid-stimulating hormone deficiency replacement therapy 17.2.1.3 Gonadotropin deficiency treatment 17.2.1.4 Growth hormone deficiency treatment 17.2.2 Treatment of hyperpituitarism 17.3 Conclusion and future perspective References 18 Advance drug delivery systems targeting hypoparathyroidism and hyperparathyroidism 18.1 Introduction 18.1.1 Parathyroidism 18.1.1.1 Hyperparathyroidism 18.1.1.2 Hypoparathyroidism 18.2 Pathophysiology 18.2.1 Pathophysiology of hyperparathyroidism 18.2.2 Pathophysiology of hypoparathyroidism 18.3 Clinical manifestations 18.4 Current treatments for hypoparathyroidism and hyperparathyroidism 18.4.1 Advance drug delivery therapy for hypoparathyroidism 18.4.2 Advance drug delivery therapy for hyperparathyroidism 18.5 Conclusion References 19 An update on the development of advanced drug delivery systems for the treatment of hyperthyroidism 19.1 Introduction 19.2 Epidemiology of hyperthyroidism 19.3 Common etiology and pathogenesis of hyperthyroidism 19.3.1 Grave’s disease 19.3.2 Toxic nodular disease 19.3.3 Thyroiditis 19.3.4 Hyperthyroidism due to drug interactions 19.3.5 Hyperthyroidism due to iodine 19.4 Diagnosis of hyperthyroidism 19.5 Advancement in drug delivery systems/techniques for the management of hyperthyroidism 19.5.1 Methimazole 19.5.2 Propylthiouracil 19.5.3 Carbimazole 19.5.4 Iodine containing compounds 19.5.5 Potassium perchlorate 19.5.6 Beta-blockers 19.5.7 Lithium carbonate 19.5.8 Glucocorticoids 19.6 Potential future therapies 19.6.1 Immunotherapy 19.6.2 Rituximab 19.6.3 CFZ533 19.6.4 ATX-GD-59 19.6.5 K1–70 19.6.6 Ultrasound based therapies 19.6.7 Radiofrequency ablation 19.7 Nanoparticles: promising auxiliary agents for therapy of hyperthyroidism and associated diseases 19.7.1 Inorganic nanoparticles: carbon nanoparticles 19.7.2 Inorganic Nanoparticles: metal-containing nanoparticles 19.7.3 Inorganic and hydrid nanoparticles: mesoporous silica and organic mesoporous silica nanoparticles 19.7.4 Organic nanoparticles: lipid nanoparticles 19.7.5 Nanoparticles in clinical trials 19.8 Conclusions and future perspectives References 20 Advanced drug delivery systems involving lysosomal storage disorders for Schinder disease and other disorders 20.1 Introduction to lysosomal storage disorders 20.2 Potential targets for lysosomal disorders 20.2.1 Targeting the affected genes 20.2.2 Targeting the lipid storage 20.2.3 Targeting lysosomes and autophagy 20.2.4 Targeting mitochondria and oxidative stress 20.2.5 Targeting calcium imbalance 20.2.6 Targeting synaptic impairment and neuron excitability 20.2.7 Targeting inflammation 20.2.8 Targeting hypomyelination 20.3 Potential strategies using advanced delivery systems for lysosomal storage diseases 20.3.1 Enzyme replacement therapy 20.3.2 Bone marrow transplantation 20.3.3 Small molecule therapies 20.3.3.1 Use of molecular chaperones 20.3.3.2 Proteostasis regulators 20.3.3.3 Substrate reduction therapy 20.3.3.4 Small molecules targeting nonsense mutations 20.3.4 Hematopoietic stem cell therapy 20.3.5 CSF-delivery of enzyme replacement therapy agents 20.3.6 Nanocarrier delivery therapies 20.4 Attempts in treatment of lysosomal storage diseases by utilization of gene therapy 20.4.1 Concept of gene therapy for lysosomal storage disorder 20.4.1.1 Viral vectors for gene therapy 20.4.1.1.1 Retroviruses 20.4.1.1.2 Lentiviruses 20.4.1.1.3 Adenoviruses 20.4.1.1.4 Adeno-associated viruses 20.4.2 Systemic gene therapy 20.4.3 CNS—directed gene therapy 20.4.4 Future-generation gene therapy strategies 20.5 Current novel lysosomal storage disorder therapies in clinical trials Acknowledgments References 21 Advanced drug delivery systems involving lysosomal storage disorders for Fabry disease 21.1 Introduction 21.2 Classification and clinical manifestations 21.3 Diagnosis 21.4 Treatments 21.4.1 Enzyme replacement therapy 21.4.2 Pharmacological chaperones 21.5 New approaches for the treatment of Fabry disease 21.5.1 Second generation enzyme therapies 21.5.1.1 Pegunigalsidase-alpha (PRX-120) 21.5.1.2 Moss-α-GAL A (Moss derived α GAL A) 21.5.1.3 Modified α-N-Acetylgalactosaminidase (NAGA) 21.5.2 Substrate reduction therapy 21.5.3 Gene therapy 21.5.3.1 Ex-vivo gene therapy 21.5.3.2 In-vivo gene therapy 21.5.4 mRNA therapy 21.5.4.1 Pros and cons of the emerging therapies 21.6 Advanced drug delivery systems in Fabry disease 21.6.1 Liposomes 21.6.2 Polystyrene capsules 21.6.3 Polyelectrolyte complexes 21.6.4 Solid-lipid nanoparticles 21.6.5 Extracellular vesicles 21.7 Conclusion References 22 Drug delivery systems in Krabbe disease—present and prospective approaches 22.1 Introduction 22.2 Genetic background 22.3 Pathophysiology 22.3.1 Sulfatide insufficiency 22.3.2 Galactocerebroside β-galactosidase deficiency 22.3.3 The psychosine hypothesis 22.3.4 Saposin A deficiency 22.4 Current approaches and challenges 22.4.1 Single modality therapies 22.4.1.1 HSCT with bone marrow transplantation 22.4.1.2 Oligodendrocyte transplantation 22.4.1.3 Neuronal and mesenchymal stem cell transplantation 22.4.1.4 Neural stem cell gene therapy 22.4.1.5 Virus mediated gene therapy 22.4.1.6 Enzyme replacement therapy 22.4.1.7 Substrate reduction therapy 22.4.1.8 Antiinflammatory approaches 22.4.1.9 Antioxidant therapy 22.4.2 Multimodality therapies 22.4.2.1 Vascular endothelial growth factor+bone marrow transplantation 22.4.2.2 L-cycloserine+bone marrow transplantation 22.4.2.3 N-Acetylcysteine+bone marrow transplantation 22.4.2.4 Enzyme replacement therapy+bone marrow transplantation 22.4.2.5 Gene therapy+bone marrow transplantation 22.4.2.6 Gene therapy+substrate reduction therapy+bone marrow transplantation 22.5 Potential targets and approaches 22.5.1 Advances in substrate reduction therapy 22.5.1.1 S2O2, a novel GalCer inhibitor 22.5.1.2 A chemotherapeutic agent as a potential therapeutic agent 22.5.2 Enzyme-loaded nanoparticles 22.5.3 Pharmacological chaperons 22.5.3.1 α-Lobeline as a potential agent 22.5.3.2 3′,4′,7-trihydroxyisoflavone 22.5.3.3 N-octyl-4-epi-β-valienamine 22.5.3.4 Azasugars and iminosugars as potential candidates 22.5.4 Quantum dots as nano-vehicle 22.6 Conclusion References 23 Strategies to combat Tay-Sachs disease 23.1 Introduction 23.2 Overview of Tay-Sachs disease 23.2.1 Pathophysiology of gangliosidosis and HexA synthesis 23.3 Treatment strategies and management 23.3.1 Substrate reduction therapy 23.3.1.1 Application of substrate reduction therapy in Tay-Sachs disease 23.3.2 Bone marrow transplantation 23.3.2.1 Application of bone marrow transplantation in Tay-Sachs disease 23.3.3 Enzyme replacement therapy 23.3.3.1 Application of enzyme replacement therapy for Tay-Sachs disease 23.3.4 Gene therapy 23.3.4.1 Application of gene therapy in Tay-Sachs disease 23.4 Developmental treatment for Tay-Sachs disease 23.4.1 Genetically modified multipotent cells 23.5 Conclusion References 24 Sandhoff disease: pathology and advanced treatment strategies 24.1 Lysosomal storage disease 24.2 Sandhoff disease 24.2.1 Introduction 24.3 Etiology and pathogenesis 24.3.1 Normal function of HEXB gene 24.3.2 Mutation in the gene HEXB 24.4 Prevalence and occurrence 24.5 Clinical characteristics 24.6 Treatment 24.6.1 Substrate replacement therapy 24.6.2 Enhanced gene therapy through complimentary drug therapy 24.6.3 Suppression through bone marrow transplantation 24.7 Carriers for lysosomal drug delivery 24.7.1 Resealed erythrocytes 24.8 Liposomes 24.9 Future developments on sandhoff disease 24.10 Conclusion References 25 Nanomaterials-based drug delivery approaches for metabolic disorders 25.1 Introduction 25.2 Routes of drug delivery for metabolic disorders 25.2.1 Drug delivery strategies 25.2.1.1 Targeted drug delivery strategies 25.2.1.2 Intelligent stimulus-responsive drug delivery strategies 25.2.2 Different drug administration routes 25.2.2.1 Oral route of drug delivery approach 25.2.2.2 Local drug delivery strategies 25.2.2.3 Transdermal drug delivery approach 25.2.2.4 Inhalation/nasal drug delivery route 25.2.2.5 Intravenous drug delivery route 25.3 Nanomaterial-based drug delivery approaches 25.3.1 Nanomaterial based drug delivery systems 25.3.1.1 Polymeric drug delivery system: micelles 25.3.1.2 Polymeric drug delivery system: dendrimers 25.3.1.3 Liposomes mediated drug delivery system 25.3.1.4 Protein-based drug delivery systems 25.3.1.5 Metal nanoparticle-based delivery systems 25.3.1.6 Composite based nanomaterials 25.3.2 Different drug delivery routes of nanocarriers 25.3.2.1 Nanomaterial-based oral-drug delivery 25.3.2.2 Nano-based transdermal drug delivery 25.3.2.3 Nano-based drug approaches for nasal route 25.3.3 Nanotoxicity 25.3.4 Blood-brain barrier and nano-based drug delivery 25.4 Applications of nano-based drug delivery systems to treat metabolic disorders 25.4.1 Treatment of diabetes 25.4.1.1 Liposomes mediated drug delivery 25.4.1.2 Niosomes-based treatment 25.4.2 Treatment of pulmonary hypertension 25.4.3 Treatment of cardiovascular diseases 25.5 Limitations of using nano-based drug delivery approach 25.6 Future prospective 25.7 Conclusion References 26 Eye in metabolic disorders: manifestations and drug delivery systems 26.1 Introduction 26.2 Diabetic retinopathy (Dr) 26.2.1 Prevalence of diabetes 26.2.2 Types and management of Diabetic retinopathy 26.2.3 Treatment of Diabetic retinopathy 26.2.4 Drug delivery systems for managing Diabetic retinopathy 26.2.4.1 Nanotechnology for diagnosis 26.2.4.2 Nanoparticles 26.2.4.3 Magnetic nanoparticles 26.2.4.4 Liposomes 26.2.4.5 Nanomicelles 26.2.4.6 Hydrogels 26.3 Glaucoma 26.3.1 Types of glaucoma and symptoms 26.3.1.1 Management of glaucoma 26.3.1.1.1 Laser treatment aspects for glaucoma 26.3.1.1.2 Conventional surgical approaches 26.3.1.1.3 Medication-based delivery system 26.3.1.1.4 Nanoparticles 26.3.1.1.5 Polymeric nanoparticles 26.3.1.1.6 Solid lipid nanoparticles 26.3.1.1.7 Silica nanoparticles 26.3.1.1.8 Liposomes 26.3.1.1.9 Polymeric hydrogels 26.3.1.1.10 Dendrimers 26.3.1.1.11 Cubosomes 26.3.1.1.12 Transfersomes 26.4 Cataract 26.4.1 Disease and its prevalence 26.4.2 Causes of cataract 26.4.2.1 Metabolic cataract 26.4.2.1.1 Galactosemic cataract 26.4.2.1.2 Diabetic cataract 26.4.2.1.3 Hypocalcemic cataract 26.4.2.1.4 Cataracts due to error in copper metabolism 26.4.3 Management of cataract 26.4.3.1 Oxidative/antioxidative system 26.4.3.2 Aldose reductase inhibitors 26.4.3.3 Dissolution of crystalline aggregates 26.4.4 Current therapies for the treatment of cataract 26.4.4.1 Cataracts surgery 26.4.4.2 Drug delivery systems 26.4.4.2.1 Solution 26.4.4.2.2 In situ gelling system 26.4.4.2.3 Colloidal drug delivery systems 26.4.4.2.4 Liposomes 26.4.4.2.5 Micro or nano emulsions 26.5 Conclusion References 27 Advanced drug delivery systems involving mitochondrial disorders 27.1 Introduction 27.2 Mitochondrial DNA 27.3 Clinical manifestations of mitochondrial disorders 27.4 Mitochondrial diseases 27.4.1 Alpers disease 27.4.2 Batten disease 27.4.3 Pearson marrow syndrome 27.4.4 Luft disease 27.4.5 Leigh syndrome 27.4.6 Wilson disease 27.4.6.1 Drug delivery systems for Wilson disease 27.4.6.1.1 Nanoparticles 27.4.6.1.2 Liposomes 27.5 Delivery systems for mitochondrial diseases 27.5.1 Liposomes 27.5.2 Polymeric nanoparticles 27.5.3 Dendrimers 27.6 Peptide-based mitochondrial-targeted strategy 27.7 Mitochondrial targeting sequences 27.8 Szeto–Schiller peptides 27.9 Vehicle-based mitochondrial-targeted strategy 27.10 MITO-Porter 27.11 Mesoporous silica nanoparticles 27.12 Conclusions References 28 Applications of phytopharmaceuticals in targeting metabolic disorders 28.1 Introduction 28.2 Role of polyphenols and terpenoids in the treatment of metabolic disorders 28.2.1 Effect of polyphenols on hyperglycemia 28.2.2 Hypertension 28.2.3 Obesity 28.2.4 Dyslipidemia 28.3 Management of metabolic disorders via phytomedicinal therapy 28.3.1 Panax ginseng 28.3.2 Rhizoma coptidis 28.3.3 Momordica charantia 28.3.4 Ligustrum lucidum Ait 28.3.5 Glycyrriza uralensis Fisch 28.3.6 Hoodia gordonii 28.3.7 Crataegus laevigata 28.3.8 Vitis vinifera 28.3.9 Vaccinium angustifolium Aiton 28.3.10 Artemisia dracunculus L 28.3.11 Cassia obtusifolia L 28.3.12 Polygonatum odoratum 28.3.13 Rehmannia glutinosa 28.3.14 Cucurbita moschata 28.3.15 Aloe vera L 28.4 Future prospective of phytopharmaceuticals for metabolic disorders 28.5 Conclusion References 29 Phytonanoparticles toward the treatment of diabetes 29.1 What is diabetes? 29.2 Classification and treatment available for diabetes 29.2.1 Type 1 diabetes 29.2.2 Type 2 diabetes 29.2.3 Genetic defects of beta-cell function 29.2.4 Gestational diabetes mellitus 29.3 Treatment available for diabetes 29.4 Nanoparticles for the treatment of diabetes 29.5 Advantages of phytoderived nanoparticles 29.6 List of nanoparticles for the treatment of diabetes 29.7 List of phytonanoparticles for the treatment of diabetes 29.7.1 Piperine 29.7.1.1 Piperine coated gold nanoparticles 29.7.1.1.1 Synthesis of Piperine coated gold nanoparticles 29.7.1.1.2 Size of nanoparticles 29.7.1.1.3 Studies on piperine coated gold nanoparticles and insulin fibrils interaction 29.7.1.1.4 Mode of action 29.7.1.2 Pioglitazone loaded Bovine Serum Albumin nanoparticles with piperine 29.7.1.2.1 Synthesis of Pioglitazone loaded Bovine Serum Albumin nanoparticles with piperine 29.7.1.2.2 Size of the nanoparticles 29.7.1.2.3 Studies on Pioglitazone loaded Bovine Serum Albumin nanoparticles with piperine 29.7.1.2.4 Mode of action 29.7.2 Lignin 29.7.2.1 Silver phenolated lignin nanoparticles 29.7.2.1.1 Synthesis of silver phenolated lignin nanoparticles 29.7.2.1.2 Size of the nanoparticles 29.7.2.1.3 Studies on silver phenolated lignin nanoparticles 29.7.2.1.4 Mode of action 29.7.3 Quercetin 29.7.3.1 Quercetin conjugated superparamagnetic iron oxide nanoparticles 29.7.3.1.1 Synthesis of Quercetin coated iron oxide nanoparticles 29.7.3.1.2 Size of the nanoparticles 29.7.3.1.3 Studies on Quercetin conjugated superparamagnetic iron oxide nanoparticles 29.7.3.1.4 Mode of action 29.7.3.2 Quercetin enveloped Soluplus/P407 micelles 29.7.3.2.1 Synthesis of Quercetin-Soluplus/P407 micelles 29.7.3.2.2 Size of the nanoparticle 29.7.3.2.3 Studies on Quercetin enveloped Soluplus/P407 micelles 29.7.3.2.4 Mode of action 29.7.4 Cellulose 29.7.4.1 AgNPs embedded in cellulose nanocrystals 29.7.4.1.1 Synthesis of AgNPs embedded in cellulose nanocrystals 29.7.4.1.2 Size of the nanoparticles 29.7.4.1.3 Studies on AgNPs embedded in cellulose nanocrystals 29.7.4.1.4 Mode of action 29.7.5 Curcumin 29.7.5.1 Nanocurcumin 29.7.5.1.1 Synthesis of nanocurcumin 29.7.5.1.2 Size of the nanoparticle 29.7.5.1.3 Studies on nanocurcumin 29.7.5.1.4 Mode of action 29.7.5.2 Curcumin-zinc oxide composite nanoparticles 29.7.5.2.1 Synthesis of Curcumin-zinc oxide composite nanoparticles 29.7.5.2.2 Size of the nanoparticles 29.7.5.2.3 Studies on Curcumin-zinc oxide composite nanoparticles 29.7.5.2.4 Mode of action 29.7.6 Berberine 29.7.6.1 O-hexadecyl-dextran entrapped berberine chloride nanoparticles 29.7.6.1.1 Synthesis of O-hexadecyl-dextran entrapped berberine chloride nanoparticles 29.7.6.1.2 Size of the nanoparticles 29.7.6.1.3 Studies on O-hexadecyl-dextran entrapped berberine chloride nanoparticles 29.7.6.1.4 Mode of action 29.7.7 Metformin 29.7.7.1 Metformin loaded chitosan nanoparticles 29.7.7.1.1 Synthesis of metformin loaded chitosan nanoparticles 29.7.7.1.2 Size of the nanoparticles 29.7.7.1.3 Studies on metformin loaded chitosan nanoparticles 29.7.7.1.4 Mode of action 29.7.7.2 Metformin-loaded alginate nanoparticles 29.7.7.2.1 Synthesis of Metformin-loaded alginate nanoparticles 29.7.7.2.2 Size of the nanoparticle 29.7.7.2.3 Studies on Metformin-loaded alginate nanoparticles 29.7.7.2.4 Mode of action 29.7.8 Lectins 29.7.8.1 Lectin-modified insulin liposomes 29.7.8.1.1 Synthesis of lectin liposomes 29.7.8.1.2 Size of the nanoparticles 29.7.8.1.3 Studies on lectin-modified insulin liposomes 29.7.8.1.4 Mode of action 29.7.9 Inulin 29.7.9.1 Nanomicelles of inulin D α-tocopherol succinate 29.7.9.1.1 Synthesis of nanomicelles of inulin D α-tocopherol succinate 29.7.9.1.2 Size of the nanoparticle 29.7.9.1.3 Studies on nanomicelles of inulin D α-tocopherol succinate 29.7.9.1.4 Mode of action 29.8 Conclusion Acknowledgments References 30 Role of nutraceuticals in metabolic syndrome 30.1 Introduction 30.2 Definition, pathogenesis, and pathophysiology of metabolic syndrome 30.2.1 Pathogenesis and pathophysiology of Ms 30.2.1.1 Insulin resistance 30.2.1.2 Inflammatory condition 30.2.1.2.1 Hypertension 30.3 Applications of nutraceuticals in the management of Ms 30.3.1 Quercetin 30.3.2 Curcumin 30.3.3 Cinnamon 30.3.4 Resveratrol 30.3.5 Vitamins 30.3.6 Dietary Fibers 30.3.7 Omega-3-fatty acid 30.3.7.1 Macro and trace elements 30.4 Conclusion References 31 Latest advances of phytomedicine in drug delivery systems for targeting metabolic disorders 31.1 Introduction 31.2 Significance of phytomedicines as therapeutics 31.2.1 Phytomedicine: from ancient to modern therapy system 31.3 Pathophysiology of metabolic syndrome 31.3.1 Resistance to insulin 31.3.2 Neurohormonal stimulation 31.3.3 Inflammatory responses 31.3.3.1 TNF-alpha: a tumor necrosis factor 31.3.3.2 C-reactive protein and interleukin 6 31.4 Phytomedicines in drug delivery system 31.4.1 Administration of phytomedicines 31.4.2 Nano-based drug administration 31.4.3 Nano-based drug delivery to treat metabolic disorders 31.4.3.1 Diabetes 31.4.3.2 Obesity 31.4.3.3 Dyslipidemia 31.4.3.4 Pulmonary arterial hypertension 31.5 Future perspective 31.6 Conclusion References 32 Clinical trials, future prospects and challenges of drug delivery in combating metabolic disorders 32.1 Challenges faced by advanced delivery systems 32.2 Future prospects 32.3 Conclusion References Index Back Cover