دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: مکانیک کوانتومی ویرایش: نویسندگان: Valia Allori, Angelo Bassi, Detlef Dürr, Nino Zanghi سری: Fundamental Theories of Physics 198 ISBN (شابک) : 9783030467760, 9783030467777 ناشر: Springer Nature Switzerland AG سال نشر: 2021 تعداد صفحات: 430 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Do Wave Functions Jump - Perspectives of the Work of GianCarlo Ghirardi به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب آیا پرش توابع موج - دیدگاه های کار GianCarlo Ghirardi نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب ادای احترامی است به میراث علمی GianCarlo Ghirardi که یکی از تأثیرگذارترین دانشمندان در زمینه مبانی مدرن نظریه کوانتومی بود. در این ارزیابی، مشارکتهای دوستان، همکاران و همکاران، تأثیر دنیای افکار او را بر نظریه، آزمایشها و فلسفه منعکس میکند، در حالی که چشماندازهایی را برای تحقیقات آینده در مبانی فیزیک کوانتومی ارائه میدهد. مضامین مشارکت ها حول واقعیت فیزیکی تابع موج و فروپاشی بدنام، تصادفی بودن، نسبیت و آزمایشات آن می چرخد.
This book is a tribute to the scientific legacy of GianCarlo Ghirardi, who was one of the most influential scientists in the field of modern foundations of quantum theory. In this appraisal, contributions from friends, collaborators and colleagues reflect the influence of his world of thoughts on theory, experiments and philosophy, while also offering prospects for future research in the foundations of quantum physics. The themes of the contributions revolve around the physical reality of the wave function and its notorious collapse, randomness, relativity and experiments.
Preface Contents History and Honour GianCarlo Ghirardi: Passing the Torch on Collapse Models References EPR-Bell-Schrödinger Proof of Nonlocality Using Position and Momentum 1 Introduction 2 Proof of Nonlocality Based on Perfect Correlations 2.1 Maximally Entangled States 2.2 Schrödinger\'s ``Theorem\'\' 2.3 The Non-existence of Non-contextual Value-Maps 2.4 Nonlocality 3 The Original EPR Argument 3.1 EPR\'s General Setup 3.2 The Example of Position and Momentum 3.3 The Conclusions of the EPR Paper by EPR 3.4 The Conclusions of the EPR Paper by Einstein 3.5 Schrödinger\'s Extension of EPR 3.6 A Regularized EPR State 4 Proof of Nonlocality Using the EPR Variables 5 What Happens in Bohmian Mechanics? 5.1 The Measurement of Momentum in Bohmian Mechanics 5.2 The Contextuality of the Momentum Measurements in Bohmian Mechanics 5.3 An Example of Nonlocality in Bohmian Mechanics 6 Summary and Conclusions References Typicality in the Foundations of Statistical Physics and Born\'s Rule 1 Why ``Most\'\' Cannot Be Avoided 2 Born\'s Rule 3 Dynamical Relaxation? 4 Physically Misguided? References Presentation of Collapse Models 1 Modified Schrödinger Dynamics 2 The Continuos Spontaneous Localisations Model 2.1 Localisation of Macroscopic Objects 2.2 Extensions of the CSL Model 3 Other Collapse Models References Appreciating What He Did 1 The Second Innovation Philosophy The GRW Theory and the Foundations of Statistical Mechanics Reference Spontaneous Localization Theories with a Particle Ontology 1 Introduction 2 The Traditional Problem of Realism and Quantum Mechanics 3 The Real Trouble for the Quantum Realist 4 Different Ontologies for Different Theories 5 A Particle Ontology for Spontaneous Localization Theories 6 Comparison Among GRW-like Theories: Relativistic GRWp? 7 Conclusion References From the Measurement Problem to the Primitive Ontology Programme 1 The Measurement Problem and the Ontology of Quantum Physics 2 The Ontology of GRW I: Matter Density Field 3 The Ontology of GRW II: Flashes 4 The Status of the Wave Function: Dynamics, not Ontology References Might Laws of Nature ‘Ground’ Phenomena? 1 Introduction 2 Grounding: A Nomological Reading? 3 Laws of Nature: Governing Versus Non-Governing Answers 4 Laws as Primitives 5 Laws as Grounding Items? References On Closing the Circle 1 Introduction 2 How not to Close the Circle 3 Closing the Circle with Quantum Jumps 4 Primitive Ontology 5 Wave Function as Structure 6 Closing the Circle—and Opening Another 7 Conclusion References Mathematical Physics On the Complete Positivity of the Ghirardi-Rimini-Weber Model 1 Introduction 2 GRW-Model 3 Explicit Solution to the Generalized GRW Model 3.1 Solution in the Heisenberg Picture 4 Complete Positivity of the Generalized GRW Model 4.1 Standard GRW Model for a Free Particle 4.2 Generalized GRW Model for a Free Particle: Singular Rate Function 4.3 Generalized GRW Model for a Free Particle: Small α Limit 5 Conclusions References Energy-Lifetime Relations 1 Introduction 2 Gamow\'s Model of Alpha Decay and Skibsted\'s Variation of It 3 The Energy Time Uncertainty Relation and the Linewidth-Lifetime Relation Are Different 4 Conclusion References On the Continuum Limit of the GRW Model 1 Discrete and Continuous Collapse Models 2 The Linear Structure Behind the GRW Model 3 The Continuum Limit of GRW and the Stochastic Trotter Formula 4 Giancarlo Ghirardi References Continuous Collapse Models on Finite Dimensional Hilbert Spaces 1 Setup 1.1 The Stochastic Schrödinger Equation and Its Origin 1.2 The Stochastic Master Equation 2 Pure Collapse 3 Jumps 3.1 Qubit with Dissipative Dynamics 3.2 Qubit with Coherent Dynamics 3.3 General Case 4 Spikes 4.1 A First Observation 4.2 Martingale Intuition 4.3 Sketch of a Proof 4.4 Are Spikes Real? 5 Generalization and Open Problems 6 Summary and Conclusion References Theoretical Physics Collapse Models, Relativity, and Discrete Spacetime 1 Introduction 2 Collapses Are Like Measurements 3 Constructing a Relativistic Collapse Model 4 Discrete Spacetime, Quantum Fields, and Collapses 5 Discussion References Opto-Mechanical Test of Collapse Models 1 Non-interferometric Experiments: A New Perspective in Collapse Model Testing 2 Opto-Mechanical System as a Probe of the Collapse Mechanism 3 Experimental Bounds 4 Testing of the Dissipative and Colored CSL Models 5 Proposals for Future Testing References Two Invariant Surface-Tensors Determine CSL of Massive Body Wave Function 1 Introduction 2 Center-of-mass Decoherence 3 Invariant Surface-Tensor for C.O.M. Decoherence 4 Rotational Decoherence 5 Outlines of Generalizations 6 Concluding Remarks References Collapse and Charged Particles 1 Introduction 2 First Calculations of the Collapse-Induced Radiation Emission 3 Comparison with the Experimental Data 4 A Discrepancy Among Different Calculations of the Emission Rate 5 Repeating the Perturbative Calculation with the CSL Model 6 An Exact Analysis with the Non-Markovian QMUPL 7 Getting the Correct Result in the CSL Model 8 Conclusions and Perspectives References Relativistic Quantum Theory 1 Topics to Be Addressed 2 Why Are We Not Able to Predict the Future by Using Our Physical Theories, and Why Is Quantum Theory Intrinsically Probabilistic? 3 The Meaning of ``Locality\'\' or ``Einstein Causality\'\' in Relativistic Quantum Theory 4 Relativistic Quantum Theory, and the Notion of ``events\'\' 5 Monitoring Events by Measuring Physical Quantities 6 Conclusions and Outlook References Classically Gravitating Quantum Systems 1 Introduction 2 Semiclassical Gravity in the Nonrelativistic Limit 2.1 Composite Systems 3 Entanglement Generation Through Newtonian Gravity 4 Is Semiclassical Gravity Causally Consistent? References Collapse Models and Cosmology 1 Introduction 2 Cosmic Inflation and Cosmological Perturbations 3 Motivations 4 Inflation and Collapse 5 Comparison with Observations 6 Conclusions References Spontaneous Collapse Theories and Cosmology 1 Introduction 2 Cosmological Inflationary Model 2.1 The Standard Treatment 3 The Case for a Modified Approach and a Specific Proposal 3.1 Conceptual Difficulties in the Standard Approach 3.2 Spontaneous Collapse of the Quantum State and Einstein\'s Semi-classical Equations 4 Practical Treatment Adapted to the Cosmological Setting 4.1 Primordial Gravity Waves 5 Discussion References A Relativistic GRW Flash Process with Interaction 1 Introduction 2 Review of the Non-interacting Version 3 Assumptions 4 Interacting Model 4.1 A Simple Case 4.2 General Case 5 Properties of the Model References Non-Markov Processes in Quantum Theory 1 Introduction 2 Open Systems and Quantum Processes 3 Events and Decoherence 4 Non-Markovian Processes 5 Conclusions and Outlook References Experimental Physics Eight Oxford Questions: Quantum Mechanics Under a New Light 1 Background 2 The Questions 3 Discussion and Conclusions References Interferometric Tests of Wave-Function Collapse 1 How the Puzzle Started 2 Experimental Approaches to Testing Objective Collapse 2.1 Far-Field Diffraction 2.2 Near Field Interference with a Long Baseline Interferometer 3 A Look into the Future of Matter-Wave Tests of CSL Models 4 Summary: On the Distinction of Collapse and Decoherence References Tests in Space 1 Beyond State of the Art 2 Why Space? 3 MAQRO—Macroscopic Quantum Resonators 4 QPPF—A Quantum Physics Platform in Space 5 The Experiments to Be Performed 6 Using the Results to Test Quantum Physics 7 Recent Results and Current Efforts 8 The Next Steps Towards Experiments in Space 9 Conclusions References Sneaking a Look at Ghirardi\'s Cards: Collapse Models Mapped with the Spontaneous Radiation 1 Introduction 2 Collapse Models and Characteristic Physical Parameters 3 Recent Upper Limits on λ from Spontaneous Radiation Search 4 Ongoing Experimental Efforts and Future Perspectives References New Avenues for Testing Collapse Models 1 Introduction 2 Noninterferometric Mechanical Tests of Collapse Models 2.1 Key Concepts 2.2 Cantilevers and Other Clamped Resonators 2.3 Levitated Particles 3 Bulk Heating Experiments 4 Cold Atoms and Condensates 5 Matter-Wave Interferometry 6 Some Concluding Remarks References