دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Ângela Sousa (editor)
سری: Methods in Molecular Biology 2197
ISBN (شابک) : 1071608711, 9781071608715
ناشر: Humana
سال نشر: 2020
تعداد صفحات: 334
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 6 مگابایت
در صورت تبدیل فایل کتاب DNA Vaccines: Methods and Protocols به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب واکسنهای DNA: روشها و پروتکلها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد جزئیات روش های عملی در مورد آخرین فناوری واکسن DNA است. فصلها خوانندگان را از طریق روشها و پروتکلهای طراحی واکسن DNA، تأثیر کمکی، روشهای تولید و خالصسازی، سیستمهای تحویل، و رویکردهای تأثیر واکسنهای DNA در عملکرد پاسخ ایمنی و در ایمونوتراپی سرطان راهنمایی میکنند. این فصلها با فرمت بسیار موفق سری روشها در زیستشناسی مولکولی نوشته شدهاند و شامل مقدمهای بر موضوعات مربوطه، فهرستی از مواد و معرفهای لازم، پروتکلهای آزمایشگاهی گام به گام، قابل تکرار آسان و نکاتی در مورد عیبیابی است. و اجتناب از دام های شناخته شده معتبر و پیشرو، واکسنهای DNA: روشها و پروتکلهابا هدف اطمینان از نتایج موفقیتآمیز در مطالعه بیشتر این زمینه حیاتی است.
This volume details practical procedures on the latest DNA vaccine technology. Chapters guide readers through methods and protocols on DNA vaccine design, the adjuvant influence, production and purification methodologies, delivery systems, and approaches of the influence of DNA vaccines in the immunological response performance and in the cancer immunotherapy. Written in the highly successful Methods in Molecular Biology series format, chapters include introductions to their respective topics, lists of the necessary materials and reagents, step-by-step, readily reproducible laboratory protocols, and tips on troubleshooting and avoiding known pitfalls. Authoritative and cutting-edge, DNA Vaccines: Methods and Protocols aims to ensure successful results in the further study of this vital field.
Preface Contents Contributors Part I: Vector Design for Vaccination Chapter 1: A Novel Cre Recombinase-Mediated In Vivo Minicircle (CRIM) DNA Vaccine Platform for Veterinary Application 1 Introduction 2 Materials 2.1 Construction of CRIM Plasmid 2.2 Determination of Synthesis of Cre Recombinase 2.3 Determination of the mcDNA Production 2.4 Preparation of Bacteria Harboring CRIM Plasmid 3 Methods 3.1 Construction of CRIM Plasmid 3.2 Determination of Synthesis of Cre Recombinase by Western Blot 3.3 Confirmation of the Production of mcDNA 3.4 Bacterial Delivery of mcDNA In Vivo 4 Notes References Chapter 2: Vaccination with Messenger RNA: A Promising Alternative to DNA Vaccination 1 Introduction 2 The Emergence of Genetic Vaccination 3 Pros and Cons of DNA and mRNA Vaccines 4 mRNA Vaccine Types and Delivery 5 Current Standing of the Field of mRNA Vaccines 5.1 mRNA-Based Cancer Vaccines 5.2 Infectious Disease mRNA Vaccines 6 Challenges and Future Directions References Chapter 3: Impact of a Plasmid DNA-Based Alphavirus Vaccine on Immunization Efficiency 1 Introduction 2 Materials 2.1 Reagents and Equipment 2.2 Cell Lines 2.3 Cell Culture Media 2.4 Alphavirus Plasmid Vectors 3 Methods 3.1 Subcloning into SFV Vectors 3.2 Transfection of Alphavirus Plasmid DNA 3.3 Verification of Transfection Efficiency 3.3.1 GFP Detection 3.3.2 X-Gal Staining 3.3.3 Immunofluorescence 3.4 Evaluation of Gene Expression 3.4.1 Western Blotting 3.4.2 Metabolic Labeling 3.5 Immunizations 3.5.1 DNA Immunization of C57BL/6 Mice 3.5.2 DNA Immunization of BALB/c Mice 3.5.3 DNA Immunization of Pigs 3.6 Future Directions and Potential for Other Applications 4 Notes References Part II: DNA Vaccine Adjuvants and Immunostimulatory Response Chapter 4: CpG Oligonucleotides as Vaccine Adjuvants 1 Introduction 2 Activation of TLR9 2.1 The TLR9 Signaling Cascade 2.2 CpG ODN 2.3 Cellular Immunology 3 CpG ODN as Vaccine Adjuvants 3.1 Results from Preclinical Studies 3.1.1 Impact of Delivery Method 3.1.2 Use of CpG ODN in Combination with Other Immune Modifiers 3.2 Results from Clinical Studies 3.2.1 Vaccines Targeting Infectious Agents 3.2.2 Vaccines Targeting Allergens 3.2.3 Vaccines Targeting Cancer 3.3 CpG ODN as Adjuvants for DNA Vaccines 3.4 Safety 4 Conclusion References Chapter 5: Molecular Adjuvants for DNA Vaccines: Application, Design, Preparation, and Formulation 1 Introduction 1.1 Cytokine-Encoding Plasmids 1.2 Chemokine-Encoding Plasmids 1.3 Co-Stimulatory Molecule-Encoding Plasmids 1.4 Plasmids Encoding Pathogen-Recognition Receptor (PRR) Ligands and Immune-Signaling Molecules 2 Materials 2.1 Target Gene Preparation to Use 2.2 Directional Cloning 2.2.1 Double-Digestion 2.2.2 DNA Extraction and Clean-Up 2.2.3 Ligation Process 2.3 Introduction of the Recombinant Vector into the Competent Cell 2.4 Evaluation of the Desired Protein Expression 2.5 Evaluation of Immune Responses 2.5.1 Immunization 2.5.2 ELISA Assay 2.5.3 Lymphocyte Proliferation Assay (LPA) 2.5.4 Cytokine ELISpot Assay 3 Methods 3.1 Insertion of the DNA Fragment of Interest into the Desired Cloning Vector 3.1.1 Double-Digestion If Single Compatible Buffer Is Available If Single Compatible Buffer Is Not Available 3.1.2 DNA Extraction and Clean-Up 3.1.3 Ligation of Purified DNA Inserts and Vector Molecules by the Bacteriophage T4 DNA Ligase (Preferably) 3.2 Introduction of the Recombinant Vector into the CaCl2 Treated-Cells 3.2.1 Preparation of Component Cells 3.2.2 Transformation of Competent Cells by Heat-Shock Method 3.2.3 Selection of Bacteria Colonies Containing Recombinant Plasmids 3.3 Evaluation of the Desired Protein Expression 3.4 Evaluation of Immune Responses 3.4.1 Immunization 3.4.2 Evaluation of Humoral Immune Responses 3.4.3 Cellular Mediated Immune Responses by lymphocyte proliferation assay (LPA) 3.4.4 Evaluation of the Cellular Mediated Immune Responses by ELISpot Assay 4 Notes References Chapter 6: Assessing Antigen-Specific Cellular Immune Responses upon HIV/SIV Plasmid DNA Vaccination in the Nonhuman Primate M... 1 Introduction 2 Materials 2.1 Common Reagents, Materials, and Equipment 2.2 Reagents and Materials for the Processing and Storage of NHP Blood Samples 2.3 Reagents for the Processing of NHP Tissues 2.4 Reagents List for ELISpot Assay 2.5 Reagents, Materials, and Equipment for Flow Cytometry-Based Assay (Peptide Stimulation to Evaluate the Antigen-Specific T-... 2.6 Reagents for Tetramer Staining 3 Methods 3.1 Processing of Blood Samples and Freezing and Thawing of Peripheral Blood Mononuclear Cells (PBMC) 3.1.1 Plasma Separation 3.1.2 PBMC Isolation Using Ficoll-Paque PLUS and Freezing Viable PBMC 3.1.3 Thawing Procedure of PBMC 3.2 Isolation of Lymphocytes from Tissues 3.3 ELISpot Assay to Enumerate the Antigen-Specific Cells Secreting IFN-γ or Perforin upon Peptide Stimulation 3.4 Peptide Stimulation to Evaluate the Antigen-Specific T-Cell Responses by ICS/Flow Cytometry 3.5 Tetramer Staining to Assess Mucosal Dissemination of Cellular Responses 3.5.1 Tetramer Staining 4 Notes References Part III: Biotechnological Processes to Obtain DNA Vaccines Chapter 7: Enhanced Biosynthesis of Plasmid DNA from Escherichia coli Applying Experimental Design 1 Introduction 2 Materials 2.1 Plasmid and Strain 2.2 Cell Banking 2.3 Pre-culture and Batch Fermentations 2.4 Plasmid DNA Quantification 3 Methods 3.1 Preparation and Transformation of Competent Cells 3.2 Master and Working Cell Bank 3.3 Plasmid DNA Biosynthesis - Standard Culture Conditions 3.4 Alkaline Cell Lysis and pDNA Quantification 3.5 Plasmid DNA Quality Analysis 3.6 Construction of a Box-Behnken Design 4 Notes References Chapter 8: Primary Purification of Plasmid DNA Using Differential Isopropanol Precipitation 1 Introduction 2 Materials 2.1 Agarose Gel 2.2 Urea Denaturing Polyacrylamide Gel 2.3 Plasmid Quantification 2.4 Culture Media 2.5 Alkaline Lysis 2.6 Isopropanol Precipitation 3 Methods 3.1 Agarose Gel Electrophoresis 3.2 Urea Denaturing Polyacrylamide Gel Electrophoresis 3.3 Plasmid Quantification and Determination of pDNA Purity 3.4 Bacterial Cell Growth 3.5 Alkaline Lysis 3.6 Differential Precipitation 4 Notes References Chapter 9: Scale-Up of Plasmid DNA Downstream Process Based on Chromatographic Monoliths 1 Introduction 1.1 Downstream Processing of Plasmid DNA 1.2 Process Analytical Technology for pDNA 2 Materials 2.1 pDNA Lysis 2.2 pDNA Capture Using Anion-Exchange Chromatography 2.3 pDNA Polishing Using Hydrophobic Interaction Chromatography (HIC) 2.4 pDNA Analytics Using CIMac pDNA Column 3 Methods 3.1 Optimization of Cell Lysis and Clarification Step 3.1.1 Optimization of Cell Lysis Time (See Note 6) 3.1.2 Optimization of Clarification Step (See Note 9) 3.1.3 pDNA Analytics (See Note 10) 3.2 Chromatographic Capture Optimization 3.3 Polishing Step Optimization 3.4 pDNA Quality Control (See Note 34) 3.5 Scaling-up the DSP-Intermediate Step 3.6 Scaling-up the DSP-Large-Scale Purification 4 Notes 5 Future Aspects References Chapter 10: Purification of Plasmid DNA by Multimodal Chromatography 1 Introduction 2 Materials 2.1 Culture Media 2.2 Primary Purification and Intermediate Recovery 2.3 Multimodal Chromatography 2.3.1 Capto Adhere MM Chromatography 2.3.2 PPA HyperCell MM Chromatography 2.4 Gel Electrophoresis and Densitometry Analysis 2.5 Micro-Dialysis 2.6 Plasmid Quantification 3 Methods 3.1 Bacterial Cell Growth 3.2 Primary Purification and Intermediate Recovery 3.3 Multimodal Chromatography 3.3.1 Capto Adhere Multimodal Chromatography 3.3.2 PPA HyperCell Multimodal Chromatography 3.4 Micro-Dialysis 3.5 Agarose Gel Electrophoresis 3.6 Plasmid Quantification 4 Notes References Chapter 11: Minicircle DNA Vaccine Purification and E7 Antigen Expression Assessment 1 Introduction 2 Materials 2.1 Bacterial Growth for PP Amplification and Recombination for mcDNA Production 2.2 mcDNA Extraction by Alkaline Lysis 2.3 mcDNA Purification 2.4 Agarose Gel Electrophoresis 2.5 Cell Culture and Transfection 2.6 Immunocytochemistry 3 Methods 3.1 PP Amplification by Bacterial Growth and PP Recombination 3.2 Alkaline Lysis for mcDNA Extraction 3.3 mcDNA Purification 3.4 Horizontal Electrophoresis 3.5 Cell Culture and Transfection 3.6 Immunocytochemistry for E7 Antigen Expression Detection 4 Notes References Part IV: DNA Vaccine Delivery Chapter 12: Tumor-Specific CD8+ T-Cell Responses Induced by DNA Vaccination 1 Introduction 2 Materials 2.1 DNA Vaccine 2.1.1 Obtaining the DNA 2.1.2 CD8+ T-Cell Transfer 2.1.3 Immunization 2.2 Test CD8+ T-Cell Response 2.2.1 Effector Phase 2.2.2 Memory Phase 2.3 Evaluate Antitumor Immune Response 3 Methods 3.1 DNA Vaccine 3.1.1 Obtaining the DNA 3.1.2 CD8+ T-Cell Transfer 3.1.3 Immunization 3.2 Test CD8+ T-Cell Response 3.2.1 Effector Phase 3.2.2 Memory Phase 3.3 Evaluate Antitumor Immune Response 3.3.1 Adherent Cells 3.3.2 Non-adherent Cells 4 Notes References Chapter 13: Therapeutic DNA Vaccine Against HPV16-Associated Cancer 1 Introduction 2 Materials 2.1 Animals 2.2 Intradermal Immunization 2.3 Skin Grafting Surgery and Monitoring 3 Methods 3.1 Intradermal Immunization 3.2 Preparation of Ear Skin Grafts 3.3 Recipient Surgery Preparations 3.4 Grafting Procedure 3.5 Bandaging Procedure 3.6 Post-Surgery Care 3.7 Monitoring and Measurement of Graft Rejection 4 Notes References Chapter 14: Bulk and Microfluidic Synthesis of Stealth and Cationic Liposomes for Gene Delivery Applications 1 Introduction 2 Materials 2.1 Bulk and Microfluidic Production of Cationic Liposomes (CLs) 2.2 Stealth Cationic Liposomes Synthesis 2.3 Synthesis of Lipoplexes for DNA Delivery 2.4 Microfabrication Technique 3 Methods 3.1 Bulk and Microfluidic Production of Cationic Liposomes (CL) 3.1.1 Lipid Solution (Stock Solution) 3.1.2 Bulk Synthesis (Ethanol Injection) 3.1.3 Microfluidic Synthesis 3.2 Stealth Cationic Liposomes Synthesis 3.3 Synthesis of Lipoplexes for DNA Delivery 3.3.1 Molar Charge Ratio Between pDNA and Phospholipids for Lipoplex Synthesis 3.3.2 Conventional Bulk Mixing 3.3.3 Microfluidic Synthesis 3.4 Microfabrication Technique 3.4.1 Chip Design 3.4.2 Plasma Treatment 3.4.3 Surface Treatments: Hydrophobic Conditions 3.4.4 Glass Slide Treatment 3.4.5 Microfluidic Device Treatment 4 Notes References Chapter 15: Conception of Plasmid DNA and Polyethylenimine Delivery Systems with Potential Application in DNA Vaccines Field 1 Introduction 2 Materials 2.1 PEI/pDNA Complexes 2.2 Agarose Gel Electrophoresis 2.3 Fourier-Transform Infrared Spectroscopy 2.4 Confocal Microscopy 3 Methods 3.1 Formation of PEI/pDNA Vectors 3.2 Characterization of Developed Polyplexes 3.2.1 Nanoparticles Morphology 3.2.2 pDNA Complexation 3.2.3 FTIR 3.2.4 Size and Surface Charges 3.3 Cellular Uptake and Internalization 3.3.1 FITC pDNA Labeling 3.3.2 Confocal Fluorescence Microscopy 4 Notes References Chapter 16: Main Features of DNA-Based Vectors for Use in Lactic Acid Bacteria and Update Protocols 1 Introduction 2 Materials 2.1 Confection and Test of Escherichia coli (E. coli) Electrocompetent Cells (See Note 1) 2.1.1 Efficiency Test of Electrocompetent E. coli Cells (See Note 1) 2.2 Transformation of E. coli Electrocompetent Cells (See Note 1) 2.3 Plasmid Extraction (Alkaline Lysis) (See Note 1) 2.4 Clone Confirmation 2.4.1 Polymerase Chain Reaction (PCR) 2.4.2 Enzymatic Digestion 2.4.3 Sequencing 2.5 Plasmid Expression Confirmation 2.5.1 Culture of Caco-2 Cells (See Note 1) 2.5.2 Lipofection of Eukaryotic Cells with the Plasmid (See Note 1) 2.5.3 Confocal Microscopy 2.5.4 Flow Cytometry (See Note 1) 2.6 Confection of Electrocompetent Lactococcus sp. Cells (See Note 1) 2.7 Transformation in L. lactis Electrocompetent Cells (See Note 1) 2.8 Plasmid Extraction (See Note 1) 2.9 Plasmid Verification 2.10 Dose Preparation for Gavage (See Note 1) 3 Methods 3.1 Confection of Electrocompetent E. coli Cells (See Notes 1 and 8) 3.2 Efficiency Test of E. coli Electrocompetent Cells (See Note 1) 3.3 Transformation in Electrocompetent E. coli Cells (See Note 1) 3.4 Plasmid Extraction (See Note 1) 3.5 Clone Confirmation 3.5.1 Polymerase Chain Reaction 3.5.2 Enzymatic Digestion 3.5.3 Sequencing 3.6 Plasmid Expression Confirmation 3.6.1 Culture of Caco-2 Cells (See Notes 1 and 16) 3.6.2 Lipofection of Eukaryotic Cells with the Plasmid (See Note 1) 3.6.3 Confocal Microscopy (See Note 1) 3.6.4 Flow Cytometry (See Note 1) 3.7 Confection of Electrocompetent Lactococcus sp. Cells (See Note 1) 3.8 Transformation of Electrocompetent Lactococcus sp. Cells (See Note 1) 3.9 Plasmid Extraction 3.10 Plasmid Verification 3.11 Doses Preparation for Gavage (See Note 1) 4 Notes References Part V: DNA Vaccine Transfer to Clinical Trials Chapter 17: Ethics of DNA Vaccine Transfer for Clinical Research 1 Introduction 2 Ethical Issues for the Development of DNA Vaccines: Oversight and Regulatory Framework 3 Population and Location Selection 4 Definition of Benefits and Risks in Clinical Trials 5 Informed Consent 6 Independent Review and Conflict of Interests References Chapter 18: Preparation of an Academic Clinical Trial 1 Introduction 2 Clinical Trials of Investigational Medicinal Products (IMPs) and Advanced Therapy Medicinal Products (ATMPs) 3 Designing the Clinical Trial Protocol 4 Stakeholders´ Responsibilities 5 Regulatory Submission 6 Feasibility Assessment References Index