دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Albert Jeltsch. Renata Z. Jurkowska
سری: Advances in Experimental Medicine and Biology, 1389
ISBN (شابک) : 3031114531, 9783031114533
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 561
[562]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 23 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب DNA Methyltransferases - Role and Function به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب DNA متیل ترانسفرازها - نقش و عملکرد نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این ویرایش دوم کتاب در مورد DNA متیل ترانسفرازها به طور جامع به روز شده است تا بسیاری از یافته های تحقیقاتی جدید را در مورد ساختار، عملکرد و فناوری این آنزیم ها که در 6 سال گذشته ظهور کرده اند، منعکس کند. مانند نسخه قبلی، این ویرایش دوم خواص بیوشیمیایی DNA متیل ترانسفرازها را توضیح می دهد و ساختارها، مکانیسم ها و نقش های بیولوژیکی آنها را در باکتری ها، انسان ها و گیاهان توضیح می دهد. همچنین در مورد فرآیندهای بیولوژیکی خواندن متیلاسیون DNA و مکانیسم های دی متیلاسیون DNA بحث می کند. این جلد جدیدترین یافتههای مربوط به مهارکنندههای DNA متیل ترانسفراز و استفاده از آنها در درمان سرطان و همچنین جدیدترین سیستمهای ویرایش اپی ژنوم مبتنی بر این آنزیمها را برجسته میکند. به طور کلی، این ویرایش دوم به طور جامع وضعیت فعلی تحقیقات در زمینه متیلاسیون DNA و متیل ترانسفراز DNA را خلاصه می کند و مطالعه ضروری برای محققان اولیه و پیشرفته در این زمینه هیجان انگیز است.
This 2nd edition of the book on DNA methyltransferases has been comprehensively updated to reflect many novel research findings regarding the structure, function, and technology of these enzymes that have emerged over the past 6 years. Like the previous edition, this 2nd edition explains the biochemical properties of DNA methyltransferases, describing their structures, mechanisms and biological roles in bacteria, humans and plants. It also discusses the biological processes of reading DNA methylation and the mechanisms of DNA demethylation. This volume highlights the newest findings on DNA methyltransferase inhibitors and their use in cancer therapy as well as the latest epigenome editing systems based on these enzymes. Overall, this 2nd edition comprehensively summarizes the current state of research in the field of DNA methylation and DNA methyltransferase and is essential reading for early career and advanced researchers in this exciting field.
Preface Contents About the Editors 1: Mechanisms and Biological Roles of DNA Methyltransferases and DNA Methylation: From Past Achievements to Future Challenges 1.1 Discovery of DNA Methylation 1.2 Discovery and Early Work on DNA MTases 1.3 DNA MTases Contain Conserved Amino Acids Sequence Motifs 1.4 Structure and Mechanism of DNA MTases 1.5 Molecular Evolution of MTases 1.6 Early Views on the Biological Role of DNA Methylation 1.7 Genetic Studies on DNMTs in Mammals 1.8 Structure, Function, and Regulation of Mammalian DNA MTases 1.9 Discovery of TET Enzymes 1.10 Methods for Site-Specific Detection of DNA Methylation 1.11 DNA MTases and Bacterial Epigenetics 1.12 Role of DNA Methylation in Cancer 1.13 Application of MTases in Artificial Epigenetic Systems 1.14 Conclusions and Outlook References 2: DNA Methylation in Prokaryotes 2.1 Introduction 2.2 CcrM Methylation 2.3 Dam Methylation 2.3.1 Role of Dam Methylation in DNA Mismatch Repair 2.3.2 Control of Chromosome Replication by Dam Methylation 2.3.3 Transcriptional Control by Dam Methylation 2.3.3.1 Temporal Regulation of Gene Expression by Dam Methylation 2.3.3.2 Regulation of Bistability by Dam Methylation 2.4 Phase Variable DNA Adenine Methylation 2.5 Additional Examples of DNA Adenine Methylation 2.6 C5-Methylcytosine 2.7 N4-Methylcytosine 2.8 Biomedical and Biotechnological Applications of Dam Methylation References 3: Domain Structure of the Dnmt1, Dnmt3a, and Dnmt3b DNA Methyltransferases 3.1 DNA Methylation and Methyltransferases in Mammals 3.2 Enzymes Responsible for the Establishment of DNA Methylation Patterns 3.2.1 PWWP Domain 3.2.2 ADD Domain 3.2.3 Catalytic Domain 3.2.4 Functions of Other Regions 3.2.5 Factors That Guide Dnmt3 to the Regions to Be Methylated 3.2.6 Correlation Between de novo DNA Methylation and Histone Modifications 3.3 Enzymes Responsible for the Maintenance of DNA Methylation Patterns 3.3.1 NTD 3.3.2 RFTS Domain 3.3.3 CXXC 3.3.4 Two BAH Domains 3.3.5 Catalytic Domain 3.4 Cross-Talk Between De Novo-Type and Maintenance-Type DNA Methyltransferases 3.5 Conclusions and Perspective References 4: Enzymology of Mammalian DNA Methyltransferases 4.1 Introduction 4.2 General Features of Mammalian DNMTs 4.2.1 Structure and Domain Composition of Mammalian DNMTs 4.2.2 Catalytic Mechanism of C5-MTases 4.2.3 Regulation and Targeting of DNMTs 4.3 Structure, Function, and Mechanism of DNMT1 4.3.1 Domain Composition of DNMT1 4.3.2 Structures of DNMT1 and Allosteric Regulation 4.3.3 Specificity of DNMT1 4.3.4 Processivity of DNMT1 4.3.5 Allosteric Regulation and Targeting of DNMT1 4.3.5.1 The DNMT1-PCNA Interaction 4.3.5.2 The DNMT1-UHRF1 Interaction 4.3.5.3 Binding of the DNMT1-RFTD to Ubiquitinated H3 Tails 4.3.5.4 Binding of DNMT1 to Heterochromatic Chromatin Marks 4.3.5.5 Regulation of Activity and Specificity of DNMT1 by Nucleic Acid Binding 4.3.6 PTMs of DNMT1 4.3.6.1 Phosphorylation of DNMT1 4.3.6.2 Acetylation and Ubiquitination of DNMT1 4.3.6.3 Lysine Methylation of DNMT1 4.4 Structure, Function, and Mechanism of DNMT3 Enzymes 4.4.1 Domain Composition of DNMT3 Proteins 4.4.2 Structures of DNMT3A and DNMT3B 4.4.3 Allosteric Regulation of DNMT3A 4.4.4 Specificity of DNMT3 Enzymes 4.4.5 Kinetic Mechanism of DNMT3 Enzymes 4.4.6 Oligomerization of DNMT3 Enzymes 4.4.6.1 Protein Multimerization of DNMT3 Enzymes 4.4.6.2 Multimerization of DNMT3A and DNMT3A/DNMT3L on DNA 4.4.7 Direct Chromatin Interaction of DNMT3 Enzymes 4.4.7.1 Binding of the DNMT3 ADD Domain to H3 Tails 4.4.7.2 Binding of DNMT3 PWWP Domain to H3 Methylated at K36 4.4.7.3 H2AK119ub Binding of DNMT3A1 4.4.8 Interaction Partners of DNMT3s 4.4.8.1 DNMT3A/DNMT3L Interaction 4.4.8.2 Interaction of DNMT3A with MeCP2 4.4.8.3 Other DNMT3A Interacting Proteins 4.4.9 Phosphorylation of DNMT3A 4.4.10 Binding of Regulatory DNA and RNA to DNMT3 Enzymes 4.5 Outlook References 5: Genetic Studies on Mammalian DNA Methyltransferases 5.1 Distinct Roles of Dnmt1 and Dnmt3 Families in DNA Methylation 5.1.1 Dnmt1: The Maintenance DNA Methyltransferase 5.1.2 Dnmt3 Family: Key Components of De Novo Methylation Machinery 5.1.3 Uhrf1: A Major Regulator of Maintenance DNA Methylation 5.2 Dnmts in Embryonic Development and Cellular Differentiation 5.2.1 Roles of Dnmts in Embryonic Development 5.2.2 Roles of Dnmts in Cellular Differentiation and Maintenance of Cell Identity. 5.2.3 DNMT Mutations in Human Diseases 5.3 Dnmts in Genomic Imprinting 5.3.1 Establishment of DNA Methylation Imprints during Gametogenesis 5.3.2 Maintenance of DNA Methylation Imprints during Development 5.3.3 Erasure of DNA Methylation Imprints in Primordial Germ Cells 5.3.4 Noncanonical Genomic Imprinting 5.4 Concluding Remarks References 6: Structure and Mechanism of Plant DNA Methyltransferases 6.1 Introduction 6.2 Structure and Mechanism of Plant DNA MTases 6.2.1 Structural Mechanism of the Maintenance of CHG Methylation in Plants 6.2.1.1 Overview of Plant CHG DNA Methylation 6.2.1.2 Structure and Mechanism of CMT3 6.2.1.3 Structure and Mechanism of KRYPTONITE 6.2.2 Mechanism of CMT2-Mediated CHH Methylation 6.2.3 RNA-Directed DNA Methylation (RdDM) 6.2.3.1 Overview of RdDM 6.2.3.2 Structure and Mechanism of DRM2 6.2.4 Potential Mechanism of MET1 in CG Methylation Maintenance 6.3 Conclusion and Perspective References 7: DNA Methylation in Honey Bees and the Unresolved Questions in Insect Methylomics 7.1 Introduction 7.2 Genotype to Phenotype 7.3 The Epigenetic Control of Gene Expression 7.4 DNA Methylation 7.4.1 Conserved and Non-Conserved Features of DNA Methylation Enzymology in Animals 7.4.2 DNMTs and Establishing DNA Methylation Patterns in the Honey Bee 7.4.3 How do TET Enzymes Contribute to Gene Regulation in the Honey Bees and Other Insects? 7.4.4 DNA Methylation Patterns Across Invertebrates 7.4.5 Does Gene Body Methylation Direct Gene Expression in Insects? 7.5 Conclusion References 8: N6-methyladenine: A Rare and Dynamic DNA Mark 8.1 Introduction 8.2 Types of DNA Modifications 8.3 Discovery of 6mA in Various Eukaryotes 8.4 Abundance of 6mA 8.5 Methods of Detecting 6mA 8.6 6mA Regulating Enzymes 8.6.1 DNA Methyltransferases 8.6.2 Mechanism of 6mA Methyltransferases 8.7 DNA Adenine Demethylation 8.8 6mA Binding Proteins 8.9 Biological Functions of 6mA 8.9.1 Effects of Adenine Methylation on DNA Structure 8.9.2 Restriction-Modification Systems 8.9.3 DNA Damage Control 8.9.4 Effect on Transcription 8.9.5 Nucleosome Positioning 8.9.6 Cell Cycle Regulation 8.9.7 Transgenerational Inheritance 8.10 Conclusions and Future Directions References 9: Pathways of DNA Demethylation 9.1 DNA Methylation: One Building Block of the Epigenome 9.2 DNA Methylation Reprogramming: Setting the Epigenome Up for Success 9.3 Active DNA Demethylation: The Hunt for the `Demethylase´ 9.4 Direct DNA Demethylation 9.5 Indirect Loss of DNA Methylation 9.5.1 Role of Cytosine Deamination in DNA Demethylation 9.5.2 Methylcytosine Oxidation-Based Demethylation Mechanisms 9.6 Chromatin Remodelling, DNA Replication, and Repair: The Epigenetic Triumvirate 9.7 Replication-Coupled Loss of DNA Methylation: Passive Demethylation 9.8 Resetting and Erasure of the Germline: A Barrier Against Transgenerational Inheritance 9.8.1 Demethylation During Preimplantation Development 9.9 Removing the Molecular Escapement Mechanism to Cell Fate and Aging by Modulation of DNA Methylation: How Cells Can Turn Ba... References 10: Structure and Function of TET Enzymes 10.1 Introduction 10.2 Discovery of TET-Mediated 5mC Oxidation 10.2.1 TET-Mediated Iterative Oxidation of 5mC 10.2.2 TET-Dependent DNA Demethylation 10.2.3 Mechanisms and Processivity for TET-Mediated Oxidation Reaction 10.2.4 Oxidation of 5mrC-RNA and 6mA-DNA 10.3 Function of TET Enzymes 10.3.1 Distribution of TET Enzymes and 5mC Oxidation Derivatives 10.3.2 TET in ESCs and Cell Differentiation 10.3.3 TETs Mediate Epigenetic Reprogramming in Early Embryogenesis and PGC Development 10.3.4 TET Enzymes in Somatic Cell Reprogramming 10.3.5 TET Enzymes and Cancer 10.3.6 TET Enzymes in Neural System 10.4 Structure of TET Enzymes 10.4.1 Domain Structure of Human TET Enzymes 10.4.2 Crystal Structure of the TET2-5mC-DNA Complex 10.4.3 Crystal Structure of the NgTet1-5mC-DNA Complex 10.4.4 Structural Basis for Substrate Preference in TET-Mediated Oxidation 10.4.5 Crystal Structure of Algal TET Homologue CMD1 in Complex with VC and 5mC-DNA 10.5 Regulation of TET Enzymes 10.5.1 Inhibitors 10.5.2 Activators 10.5.3 Interacting Proteins 10.6 Concluding Remarks References 11: Proteins That Read DNA Methylation 11.1 Introduction 11.2 The Methyl-CpG-Binding Domain Family 11.2.1 MeCP2 11.2.2 MBD1 11.2.3 MBD2 11.2.4 MBD3 11.2.5 MBD4 11.2.6 MBD5 and MBD6 11.3 SET- and RING-Associated (SRA) Domain 11.3.1 UHRF1 11.3.2 UHRF2 11.4 Transcription Factors 11.4.1 Kaiso and ZBTB38 11.4.2 CTCF 11.4.3 ZFP57 11.4.4 KLF4 11.4.5 EGR1 and WT1 11.4.6 bZIP 11.4.7 Homeodomain Proteins 11.5 Conclusion References 12: Recent Advances on DNA Base Flipping: A General Mechanism for Writing, Reading, and Erasing DNA Modifications 12.1 Introduction 12.2 Base Flipping for Methylation of DNA Bases 12.2.1 Bacterial DNMTs (HhaI, TaqI, Dam, CcrM, and CamA) 12.2.2 Mammalian DNMTs (DNMT1, DNMT3A/3L) 12.2.3 Implications of DNA Methyltransferase Oligomers (DNMT3A/3L, DNMT3A/3B3, EcoP15I, CcrM, and MettL3-14) 12.2.4 Plant DNMTs 12.3 Base Flipping in Oxidative Modifications of Methylated Bases 12.3.1 Eukaryotic TET Enzymes 12.3.2 AlkB and Homologs 12.4 Base Flipping in the Recognition of Modified Bases 12.4.1 Eukaryotic SRA Domains 12.4.2 EcMcrB-N Homologs as 5mC and N6mA Readers 12.4.3 5mC and N6mA Readers Use Non-Base-Flipping Recognition 12.5 Base Flipping in Removing Modified and Unmodified Bases 12.5.1 Mammalian Thymine DNA Glycosylase (TDG) 12.5.2 Plant ROS1 12.5.3 Archaeon PabI Activity as Adenine DNA Glycosylase 12.6 Conclusions References 13: The Role of DNA Methylation and DNA Methyltransferases in Cancer 13.1 Overview of Genetic and Epigenetic Alterations in Human Cancers 13.2 DNA Methyltransferases 13.3 Interplay Between DNA Methyltransferases and Histone Modifiers 13.4 CpG Islands 13.5 DNA Methylation 13.5.1 Tissue-Specific DNA Methylation 13.5.2 DNA Methylation as a Function of Aging 13.6 Mutations of Epigenetic Modifier Genes in Human Cancers 13.7 DNA Hypermethylation in Human Cancers 13.7.1 Tumor Stratification and DNA Methylation Marker Discovery Accelerated by International Consortia 13.7.2 Promoter DNA Hypermethylation 13.7.3 CpG Island Methylator Phenotypes (CIMPs) Stratify Tumor Subclasses 13.7.4 DNA Hypermethylation of Noncoding RNAs 13.7.5 DNA Hypomethylation 13.7.5.1 Repetitive Element DNA Hypomethylation 13.7.5.2 Partially Methylated Domains (PMDs) 13.7.6 Whole Genome Bisulfite Sequencing (WGBS) of Cancer Genomes 13.7.7 Gene Body DNA Methylation 13.7.8 Enhancer DNA Methylation 13.8 Liquid Biopsy Measurements of Cancer-Specific DNA Methylation 13.9 DNA Methylation as a Therapeutic Target 13.10 Concluding Remarks References 14: DNA Methyltransferases and DNA Damage 14.1 Brief Summary of DNA Methyltransferases 14.2 DNA Methylation and Regulation of DNA Repair 14.2.1 Adenine Methylation and DNA Repair in Bacteria 14.2.2 DNA Methylation and Recombination 14.3 Direct Effects of DNA Methylation on DNA Damage 14.3.1 Effect of DNA Methylation of Mutation Rate via Cytosine Deamination 14.3.2 DNA Alkylation Damage Induction 14.3.3 DNA Demethylation and DNA Damage 14.4 Conclusion References 15: Role of DNMTs in the Brain 15.1 Introduction 15.2 The Mammalian Brain 15.2.1 Developmental Principles of the Cerebral Cortex as the Seat of Higher Cognitive Functions 15.3 DNMT Expression in the Brain 15.4 DNMT Function in the Developing Brain: Neurogenesis 15.5 DNMT Function in the Developing Brain: Post-mitotic Neuronal Maturation 15.6 Role of DNMTs in Brain Function, Learning, and Memory 15.6.1 Functional Implications of DNMTs in Learning and Memory 15.6.2 DNMTs as Potential Mediators of Cell-Intrinsic Mechanisms for Memory Consolidation and Maintenance 15.7 DNMTs in Neurodevelopmental and Neuropsychiatric Diseases 15.8 DNMTs in Neuronal Aging 15.9 DNMTs in Neurodegeneration 15.9.1 Alzheimer´s Disease and Tauopathies 15.9.2 Huntington´s Disease 15.10 Role of DNMTs in Brain Cancer 15.10.1 Promoter Methylation 15.10.2 Methylation of Distal Regulatory Elements 15.10.3 Implications of Altered DNMT Expression and Targeting in Brain Cancer and Therapy Resistance 15.10.4 Crosstalk of DNMTs and miRNA-Mediated Translational Control 15.11 Conclusions References 16: Current and Emerging Technologies for the Analysis of the Genome-Wide and Locus-Specific DNA Methylation Patterns 16.1 Introduction 16.1.1 DNA Methylation 16.2 Principles of DNA Methylation Detection 16.3 Global Methylation Content of a Sample 16.4 Whole Methylome Analyses 16.5 Genome-Wide Methylation Analyses Using NGS 16.5.1 Bisulfite-Based Methods 16.5.2 Affinity and Antibody-Based Enrichment Methods 16.5.3 Sequencing Approaches Using Methylation-Sensitive/Dependent Restriction Enzymes 16.5.4 Epigenotyping Arrays 16.6 Locus-Specific DNA Methylation Analysis 16.6.1 Amplicon Bisulfite Sequencing 16.6.2 Pyrosequencing 16.6.3 MALDI Mass Spectrometry 16.6.4 Methylation-Specific PCR and Its Quantitative Variations 16.7 DNA Methylation Analysis of Circulating Cell-Free DNA 16.8 Single-Cell DNA Methylation Analysis 16.9 Analysis of Cytosine Hydroxymethylation 16.10 Direct Readout of DNA Methylation 16.11 Combined Analysis of DNA Methylation and Other Epigenetic Modifications 16.11.1 Histone Modifications 16.11.2 Nucleosome Positioning 16.12 Conclusions References 17: Inhibitors of DNA Methylation 17.1 How to Inhibit DNA Methyltransferases 17.2 Chemistry and Structure of DNMT Inhibitors 17.3 Potential Applications of DNMT Inhibitors 17.3.1 DNMTi Application in Cancers 17.3.1.1 Nucleoside Analogs As Single Agent Pro-drugs of Nucleoside Analogs Nucleoside DNMTi in Combination with Other Drugs With Other Epidrugs With ``Classical´´ Chemo- and Immunotherapies 17.3.1.2 Non-nucleoside DNMTi 17.3.2 DNMTi Application in Neurological and Psychiatric Disorders 17.3.2.1 Memory Formation 17.3.2.2 Schizophrenia 17.3.2.3 Bipolar Disorders 17.3.2.4 Epilepsy 17.3.2.5 Post-traumatic Stress Disorder 17.3.2.6 Depression 17.3.2.7 X-Chromosome-Related Diseases and Autism Disorders 17.3.2.8 Parkinson´s and Alzheimer´s Diseases 17.3.2.9 Aging-Related Senescence and Amyotrophic Lateral Sclerosis 17.3.2.10 Neuronal Stem Cell 17.3.3 DNMTi Application in Cardiovascular Diseases 17.3.4 DNMTi Application in Other Human Pathologies 17.3.4.1 Obesity 17.3.4.2 Alcohol Addiction 17.3.4.3 Inflammation and Allergy 17.3.4.4 Infectious Diseases Viral Infections Bacterial Infections Parasite Infections 17.3.4.5 Embryo Growth 17.3.5 DNMTi Application in Metabolite Production 17.3.6 DNMTi in Plants 17.4 Innovative Indirect and Combined Approaches to Better Target DNA Methylation 17.4.1 Methyl-CpG Binding Proteins: Nature and Probes 17.4.1.1 Methyl-CpG Binding Domain Proteins (MBD) 17.4.1.2 SET and RING Associated (SRA) Domain Proteins 17.4.1.3 Kaiso Proteins 17.4.2 Bifunctional Inhibitors Involving DNMTi 17.5 Limits and Hopes of DNMTi Applications and New Perspectives References 18: Gene-Targeted DNA Methylation: Towards Long-Lasting Reprogramming of Gene Expression? 18.1 Introduction 18.2 Locus-Specific DNA Methylation Editing 18.2.1 Targeted DNA Methylation 18.2.2 Targeted DNA Demethylation 18.3 Sustained Transcriptional States upon DNA Methylation Editing 18.3.1 Long-Lasting Transcriptional Repression 18.3.2 Sustained Gene Re-expression 18.4 In Vivo Transcriptional Modulation via DNA Methylation Epigenetic Editing 18.5 Further Considerations 18.6 Conclusions References 19: DNA Labeling Using DNA Methyltransferases 19.1 Introduction 19.2 Synthetic Cofactor Analogs for MTase-Directed Modification of DNA 19.3 MTase Activity with the Synthetic Cofactor Analogs 19.4 (Towards) Practical Implementation of MTase-Directed DNA Labeling in Genomic Research 19.4.1 MTase-Directed Labeling for General Manipulations and Analysis of DNA 19.4.2 DNA Labeling for Analysis of Particular DNA Sites or Sequences 19.4.2.1 Optical Mapping of DNA Sequences and Epigenetic States 19.4.2.2 Applications of MTase-Directed Labeling in Epigenomics 19.5 Cofactor-Independent MTase-Directed Labeling 19.6 Conclusions/Outlook References