ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب DiveintoDeep Learning Release 0.16.6

دانلود کتاب DiveintoDeep Learning Release 0.16.6

DiveintoDeep Learning Release 0.16.6

مشخصات کتاب

DiveintoDeep Learning Release 0.16.6

ویرایش:  
نویسندگان: , , ,   
سری:  
 
ناشر: leanpub.com 
سال نشر: 2021 
تعداد صفحات: [1029] 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 25 Mb 

قیمت کتاب (تومان) : 38,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب DiveintoDeep Learning Release 0.16.6 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب DiveintoDeep Learning Release 0.16.6 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Preface
Installation
Notation
Introduction
	A Motivating Example
	Key Components
		Data
		Models
		Objective Functions
		Optimization Algorithms
	Kinds of Machine Learning Problems
		Supervised Learning
		Unsupervised learning
		Interacting with an Environment
		Reinforcement Learning
	Roots
	The Road to Deep Learning
	Success Stories
	Characteristics
Preliminaries
	Data Manipulation
		Getting Started
		Operations
		Broadcasting Mechanism
		Indexing and Slicing
		Saving Memory
		Conversion to Other Python Objects
	Data Preprocessing
		Reading the Dataset
		Handling Missing Data
		Conversion to the Tensor Format
	Linear Algebra
		Scalars
		Vectors
		Matrices
		Tensors
		Basic Properties of Tensor Arithmetic
		Reduction
		Dot Products
		Matrix-Vector Products
		Matrix-Matrix Multiplication
		Norms
		More on Linear Algebra
	Calculus
		Derivatives and Differentiation
		Partial Derivatives
		Gradients
		Chain Rule
	Automatic Differentiation
		A Simple Example
		Backward for Non-Scalar Variables
		Detaching Computation
		Computing the Gradient of Python Control Flow
	Probability
		Basic Probability Theory
		Dealing with Multiple Random Variables
		Expectation and Variance
	Documentation
		Finding All the Functions and Classes in a Module
		Finding the Usage of Specific Functions and Classes
Linear Neural Networks
	Linear Regression
		Basic Elements of Linear Regression
		Vectorization for Speed
		The Normal Distribution and Squared Loss
		From Linear Regression to Deep Networks
	Linear Regression Implementation from Scratch
		Generating the Dataset
		Reading the Dataset
		Initializing Model Parameters
		Defining the Model
		Defining the Loss Function
		Defining the Optimization Algorithm
		Training
	Concise Implementation of Linear Regression
		Generating the Dataset
		Reading the Dataset
		Defining the Model
		Initializing Model Parameters
		Defining the Loss Function
		Defining the Optimization Algorithm
		Training
	Softmax Regression
		Classification Problem
		Network Architecture
		Parameterization Cost of Fully-Connected Layers
		Softmax Operation
		Vectorization for Minibatches
		Loss Function
		Information Theory Basics
		Model Prediction and Evaluation
	The Image Classification Dataset
		Reading the Dataset
		Reading a Minibatch
		Putting All Things Together
	Implementation of Softmax Regression from Scratch
		Initializing Model Parameters
		Defining the Softmax Operation
		Defining the Model
		Defining the Loss Function
		Classification Accuracy
		Training
		Prediction
	Concise Implementation of Softmax Regression
		Initializing Model Parameters
		Softmax Implementation Revisited
		Optimization Algorithm
		Training
Multilayer Perceptrons
	Multilayer Perceptrons
		Hidden Layers
		Activation Functions
	Implementation of Multilayer Perceptrons from Scratch
		Initializing Model Parameters
		Activation Function
		Model
		Loss Function
		Training
	Concise Implementation of Multilayer Perceptrons
		Model
	Model Selection, Underfitting, and Overfitting
		Training Error and Generalization Error
		Model Selection
		Underfitting or Overfitting?
		Polynomial Regression
	Weight Decay
		Norms and Weight Decay
		High-Dimensional Linear Regression
		Implementation from Scratch
		Concise Implementation
	Dropout
		Overfitting Revisited
		Robustness through Perturbations
		Dropout in Practice
		Implementation from Scratch
		Concise Implementation
	Forward Propagation, Backward Propagation, and Computational Graphs
		Forward Propagation
		Computational Graph of Forward Propagation
		Backpropagation
		Training Neural Networks
	Numerical Stability and Initialization
		Vanishing and Exploding Gradients
		Parameter Initialization
	Environment and Distribution Shift
		Types of Distribution Shift
		Examples of Distribution Shift
		Correction of Distribution Shift
		A Taxonomy of Learning Problems
		Fairness, Accountability, and Transparency in Machine Learning
	Predicting House Prices on Kaggle
		Downloading and Caching Datasets
		Kaggle
		Accessing and Reading the Dataset
		Data Preprocessing
		Training
		K-Fold Cross-Validation
		Model Selection
		Submitting Predictions on Kaggle
Deep Learning Computation
	Layers and Blocks
		A Custom Block
		The Sequential Block
		Executing Code in the Forward Propagation Function
		Efficiency
	Parameter Management
		Parameter Access
		Parameter Initialization
		Tied Parameters
	Deferred Initialization
		Instantiating a Network
	Custom Layers
		Layers without Parameters
		Layers with Parameters
	File I/O
		Loading and Saving Tensors
		Loading and Saving Model Parameters
	GPUs
		Computing Devices
		Tensors and GPUs
		Neural Networks and GPUs
Convolutional Neural Networks
	From Fully-Connected Layers to Convolutions
		Invariance
		Constraining the MLP
		Convolutions
		“Where’s Waldo” Revisited
	Convolutions for Images
		The Cross-Correlation Operation
		Convolutional Layers
		Object Edge Detection in Images
		Learning a Kernel
		Cross-Correlation and Convolution
		Feature Map and Receptive Field
	Padding and Stride
		Padding
		Stride
	Multiple Input and Multiple Output Channels
		Multiple Input Channels
		Multiple Output Channels
		11 Convolutional Layer
	Pooling
		Maximum Pooling and Average Pooling
		Padding and Stride
		Multiple Channels
	Convolutional Neural Networks (LeNet)
		LeNet
		Training
Modern Convolutional Neural Networks
	Deep Convolutional Neural Networks (AlexNet)
		Learning Representations
		AlexNet
		Reading the Dataset
		Training
	Networks Using Blocks (VGG)
		VGG Blocks
		VGG Network
		Training
	Network in Network (NiN)
		NiN Blocks
		NiN Model
		Training
	Networks with Parallel Concatenations (GoogLeNet)
		Inception Blocks
		GoogLeNet Model
		Training
	Batch Normalization
		Training Deep Networks
		Batch Normalization Layers
		Implementation from Scratch
		Applying Batch Normalization in LeNet
		Concise Implementation
		Controversy
	Residual Networks (ResNet)
		Function Classes
		Residual Blocks
		ResNet Model
		Training
	Densely Connected Networks (DenseNet)
		From ResNet to DenseNet
		Dense Blocks
		Transition Layers
		DenseNet Model
		Training
Recurrent Neural Networks
	Sequence Models
		Statistical Tools
		Training
		Prediction
	Text Preprocessing
		Reading the Dataset
		Tokenization
		Vocabulary
		Putting All Things Together
	Language Models and the Dataset
		Learning a Language Model
		Markov Models and n-grams
		Natural Language Statistics
		Reading Long Sequence Data
	Recurrent Neural Networks
		Neural Networks without Hidden States
		Recurrent Neural Networks with Hidden States
		RNN-based Character-Level Language Models
		Perplexity
	Implementation of Recurrent Neural Networks from Scratch
		One-Hot Encoding
		Initializing the Model Parameters
		RNN Model
		Prediction
		Gradient Clipping
		Training
	Concise Implementation of Recurrent Neural Networks
		Defining the Model
		Training and Predicting
	Backpropagation Through Time
		Analysis of Gradients in RNNs
		Backpropagation Through Time in Detail
Modern Recurrent Neural Networks
	Gated Recurrent Units (GRU)
		Gated Hidden State
		Implementation from Scratch
		Concise Implementation
	Long Short-Term Memory (LSTM)
		Gated Memory Cell
		Implementation from Scratch
		Concise Implementation
	Deep Recurrent Neural Networks
		Functional Dependencies
		Concise Implementation
		Training and Prediction
	Bidirectional Recurrent Neural Networks
		Dynamic Programming in Hidden Markov Models
		Bidirectional Model
		Training a Bidirectional RNN for a Wrong Application
	Machine Translation and the Dataset
		Downloading and Preprocessing the Dataset
		Tokenization
		Vocabulary
		Reading the Dataset
		Putting All Things Together
	Encoder-Decoder Architecture
		Encoder
		Decoder
		Putting the Encoder and Decoder Together
	Sequence to Sequence Learning
		Encoder
		Decoder
		Loss Function
		Training
		Prediction
		Evaluation of Predicted Sequences
	Beam Search
		Greedy Search
		Exhaustive Search
		Beam Search
Attention Mechanisms
	Attention Cues
		Attention Cues in Biology
		Queries, Keys, and Values
		Visualization of Attention
	Attention Pooling: Nadaraya-Watson Kernel Regression
		Generating the Dataset
		Average Pooling
		Nonparametric Attention Pooling
		Parametric Attention Pooling
	Attention Scoring Functions
		Masked Softmax Operation
		Additive Attention
		Scaled Dot-Product Attention
	Bahdanau Attention
		Model
		Defining the Decoder with Attention
		Training
	Multi-Head Attention
		Model
		Implementation
	Self-Attention and Positional Encoding
		Self-Attention
		Comparing CNNs, RNNs, and Self-Attention
		Positional Encoding
	Transformer
		Model
		Positionwise Feed-Forward Networks
		Residual Connection and Layer Normalization
		Encoder
		Decoder
		Training
Optimization Algorithms
	Optimization and Deep Learning
		Goal of Optimization
		Optimization Challenges in Deep Learning
	Convexity
		Definitions
		Properties
		Constraints
	Gradient Descent
		One-Dimensional Gradient Descent
		Multivariate Gradient Descent
		Adaptive Methods
	Stochastic Gradient Descent
		Stochastic Gradient Updates
		Dynamic Learning Rate
		Convergence Analysis for Convex Objectives
		Stochastic Gradients and Finite Samples
	Minibatch Stochastic Gradient Descent
		Vectorization and Caches
		Minibatches
		Reading the Dataset
		Implementation from Scratch
		Concise Implementation
	Momentum
		Basics
		Practical Experiments
		Theoretical Analysis
	Adagrad
		Sparse Features and Learning Rates
		Preconditioning
		The Algorithm
		Implementation from Scratch
		Concise Implementation
	RMSProp
		The Algorithm
		Implementation from Scratch
		Concise Implementation
	Adadelta
		The Algorithm
		Implementation
	Adam
		The Algorithm
		Implementation
		Yogi
	Learning Rate Scheduling
		Toy Problem
		Schedulers
		Policies
Computational Performance
	Compilers and Interpreters
		Symbolic Programming
		Hybrid Programming
		Hybridizing the Sequential Class
	Asynchronous Computation
		Asynchrony via Backend
		Barriers and Blockers
		Improving Computation
	Automatic Parallelism
		Parallel Computation on GPUs
		Parallel Computation and Communication
	Hardware
		Computers
		Memory
		Storage
		CPUs
		GPUs and other Accelerators
		Networks and Buses
		More Latency Numbers
	Training on Multiple GPUs
		Splitting the Problem
		Data Parallelism
		A Toy Network
		Data Synchronization
		Distributing Data
		Training
	Concise Implementation for Multiple GPUs
		A Toy Network
		Network Initialization
		Training
	Parameter Servers
		Data-Parallel Training
		Ring Synchronization
		Multi-Machine Training
		Key–Value Stores
Computer Vision
	Image Augmentation
		Common Image Augmentation Methods
		Training with Image Augmentation
	Fine-Tuning
		Steps
		Hot Dog Recognition
	Object Detection and Bounding Boxes
		Bounding Boxes
	Anchor Boxes
		Generating Multiple Anchor Boxes
		Intersection over Union (IoU)
		Labeling Anchor Boxes in Training Data
		Predicting Bounding Boxes with Non-Maximum Suppression
	Multiscale Object Detection
		Multiscale Anchor Boxes
		Multiscale Detection
	The Object Detection Dataset
		Downloading the Dataset
		Reading the Dataset
		Demonstration
	Single Shot Multibox Detection
		Model
		Training
		Prediction
	Region-based CNNs (R-CNNs)
		R-CNNs
		Fast R-CNN
		Faster R-CNN
		Mask R-CNN
	Semantic Segmentation and the Dataset
		Image Segmentation and Instance Segmentation
		The Pascal VOC2012 Semantic Segmentation Dataset
	Transposed Convolution
		Basic Operation
		Padding, Strides, and Multiple Channels
		Connection to Matrix Transposition
	Fully Convolutional Networks
		The Model
		Initializing Transposed Convolutional Layers
		Reading the Dataset
		Training
		Prediction
	Neural Style Transfer
		Method
		Reading the Content and Style Images
		Preprocessing and Postprocessing
		Extracting Features
		Defining the Loss Function
		Initializing the Synthesized Image
		Training
	Image Classification (CIFAR-10) on Kaggle
		Obtaining and Organizing the Dataset
		Image Augmentation
		Reading the Dataset
		Defining the Model
		Defining the Training Function
		Training and Validating the Model
		Classifying the Testing Set and Submitting Results on Kaggle
	Dog Breed Identification (ImageNet Dogs) on Kaggle
		Obtaining and Organizing the Dataset
		Image Augmentation
		Reading the Dataset
		Fine-Tuning a Pretrained Model
		Defining the Training Function
		Training and Validating the Model
		Classifying the Testing Set and Submitting Results on Kaggle
Natural Language Processing: Pretraining
	Word Embedding (word2vec)
		Why Not Use One-hot Vectors?
		The Skip-Gram Model
		The Continuous Bag of Words (CBOW) Model
	Approximate Training
		Negative Sampling
		Hierarchical Softmax
	The Dataset for Pretraining Word Embedding
		Reading and Preprocessing the Dataset
		Subsampling
		Loading the Dataset
		Putting All Things Together
	Pretraining word2vec
		The Skip-Gram Model
		Training
		Applying the Word Embedding Model
	Word Embedding with Global Vectors (GloVe)
		The GloVe Model
		Understanding GloVe from Conditional Probability Ratios
	Subword Embedding
		fastText
		Byte Pair Encoding
	Finding Synonyms and Analogies
		Using Pretrained Word Vectors
		Applying Pretrained Word Vectors
	Bidirectional Encoder Representations from Transformers (BERT)
		From Context-Independent to Context-Sensitive
		From Task-Specific to Task-Agnostic
		BERT: Combining the Best of Both Worlds
		Input Representation
		Pretraining Tasks
		Putting All Things Together
	The Dataset for Pretraining BERT
		Defining Helper Functions for Pretraining Tasks
		Transforming Text into the Pretraining Dataset
	Pretraining BERT
		Pretraining BERT
		Representing Text with BERT
Natural Language Processing: Applications
	Sentiment Analysis and the Dataset
		The Sentiment Analysis Dataset
		Putting All Things Together
	Sentiment Analysis: Using Recurrent Neural Networks
		Using a Recurrent Neural Network Model
	Sentiment Analysis: Using Convolutional Neural Networks
		One-Dimensional Convolutional Layer
		Max-Over-Time Pooling Layer
		The TextCNN Model
	Natural Language Inference and the Dataset
		Natural Language Inference
		The Stanford Natural Language Inference (SNLI) Dataset
	Natural Language Inference: Using Attention
		The Model
		Training and Evaluating the Model
	Fine-Tuning BERT for Sequence-Level and Token-Level Applications
		Single Text Classification
		Text Pair Classification or Regression
		Text Tagging
		Question Answering
	Natural Language Inference: Fine-Tuning BERT
		Loading Pretrained BERT
		The Dataset for Fine-Tuning BERT
		Fine-Tuning BERT
Recommender Systems
	Overview of Recommender Systems
		Collaborative Filtering
		Explicit Feedback and Implicit Feedback
		Recommendation Tasks
	The MovieLens Dataset
		Getting the Data
		Statistics of the Dataset
		Splitting the dataset
		Loading the data
	Matrix Factorization
		The Matrix Factorization Model
		Model Implementation
		Evaluation Measures
		Training and Evaluating the Model
	AutoRec: Rating Prediction with Autoencoders
		Model
		Implementing the Model
		Reimplementing the Evaluator
		Training and Evaluating the Model
	Personalized Ranking for Recommender Systems
		Bayesian Personalized Ranking Loss and its Implementation
		Hinge Loss and its Implementation
	Neural Collaborative Filtering for Personalized Ranking
		The NeuMF model
		Model Implementation
		Customized Dataset with Negative Sampling
		Evaluator
		Training and Evaluating the Model
	Sequence-Aware Recommender Systems
		Model Architectures
		Model Implementation
		Sequential Dataset with Negative Sampling
		Load the MovieLens 100K dataset
		Train the Model
	Feature-Rich Recommender Systems
		An Online Advertising Dataset
		Dataset Wrapper
	Factorization Machines
		2-Way Factorization Machines
		An Efficient Optimization Criterion
		Model Implementation
		Load the Advertising Dataset
		Train the Model
	Deep Factorization Machines
		Model Architectures
		Implemenation of DeepFM
		Training and Evaluating the Model
Generative Adversarial Networks
	Generative Adversarial Networks
		Generate Some “Real” Data
		Generator
		Discriminator
		Training
	Deep Convolutional Generative Adversarial Networks
		The Pokemon Dataset
		The Generator
		Discriminator
		Training
Appendix: Mathematics for Deep Learning
	Geometry and Linear Algebraic Operations
		Geometry of Vectors
		Dot Products and Angles
		Hyperplanes
		Geometry of Linear Transformations
		Linear Dependence
		Rank
		Invertibility
		Determinant
		Tensors and Common Linear Algebra Operations
	Eigendecompositions
		Finding Eigenvalues
		Decomposing Matrices
		Operations on Eigendecompositions
		Eigendecompositions of Symmetric Matrices
		Gershgorin Circle Theorem
		A Useful Application: The Growth of Iterated Maps
		Conclusions
	Single Variable Calculus
		Differential Calculus
		Rules of Calculus
	Multivariable Calculus
		Higher-Dimensional Differentiation
		Geometry of Gradients and Gradient Descent
		A Note on Mathematical Optimization
		Multivariate Chain Rule
		The Backpropagation Algorithm
		Hessians
		A Little Matrix Calculus
	Integral Calculus
		Geometric Interpretation
		The Fundamental Theorem of Calculus
		Change of Variables
		A Comment on Sign Conventions
		Multiple Integrals
		Change of Variables in Multiple Integrals
	Random Variables
		Continuous Random Variables
	Maximum Likelihood
		The Maximum Likelihood Principle
		Numerical Optimization and the Negative Log-Likelihood
		Maximum Likelihood for Continuous Variables
	Distributions
		Bernoulli
		Discrete Uniform
		Continuous Uniform
		Binomial
		Poisson
		Gaussian
		Exponential Family
	Naive Bayes
		Optical Character Recognition
		The Probabilistic Model for Classification
		The Naive Bayes Classifier
		Training
	Statistics
		Evaluating and Comparing Estimators
		Conducting Hypothesis Tests
		Constructing Confidence Intervals
	Information Theory
		Information
		Entropy
		Mutual Information
		Kullback–Leibler Divergence
		Cross Entropy
Appendix: Tools for Deep Learning
	Using Jupyter
		Editing and Running the Code Locally
		Advanced Options
	Using Amazon SageMaker
		Registering and Logging In
		Creating a SageMaker Instance
		Running and Stopping an Instance
		Updating Notebooks
	Using AWS EC2 Instances
		Creating and Running an EC2 Instance
		Installing CUDA
		Installing MXNet and Downloading the D2L Notebooks
		Running Jupyter
		Closing Unused Instances
	Using Google Colab
	Selecting Servers and GPUs
		Selecting Servers
		Selecting GPUs
	Contributing to This Book
		Minor Text Changes
		Propose a Major Change
		Adding a New Section or a New Framework Implementation
		Submitting a Major Change
	d2l API Document
Bibliography
Python Module Index
Index




نظرات کاربران