ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Distributions in the Physical and Engineering Sciences vol 1: Distributional and Fractal Calculus, Integral Transforms and Wavelets

دانلود کتاب توزیع‌ها در علوم فیزیک و مهندسی جلد 1: حساب توزیعی و فراکتال، تبدیل‌های انتگرال و موجک

Distributions in the Physical and Engineering Sciences vol 1: Distributional and Fractal Calculus, Integral Transforms and Wavelets

مشخصات کتاب

Distributions in the Physical and Engineering Sciences vol 1: Distributional and Fractal Calculus, Integral Transforms and Wavelets

ویرایش:  
نویسندگان: ,   
سری: Applied and Numerical Harmonic Analysis 
ISBN (شابک) : 1461286794, 0817639241 
ناشر: Birkhäuser 
سال نشر: 1997 
تعداد صفحات: 345 
زبان: English 
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 2 مگابایت 

قیمت کتاب (تومان) : 42,000



کلمات کلیدی مربوط به کتاب توزیع‌ها در علوم فیزیک و مهندسی جلد 1: حساب توزیعی و فراکتال، تبدیل‌های انتگرال و موجک: تئوری توزیع ها (تحلیل تابعی)، توزیع ها، نظریه (تحلیل تابعی)، فراکتال ها، موجک ها، فیزیک ریاضی



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Distributions in the Physical and Engineering Sciences vol 1: Distributional and Fractal Calculus, Integral Transforms and Wavelets به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب توزیع‌ها در علوم فیزیک و مهندسی جلد 1: حساب توزیعی و فراکتال، تبدیل‌های انتگرال و موجک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب توزیع‌ها در علوم فیزیک و مهندسی جلد 1: حساب توزیعی و فراکتال، تبدیل‌های انتگرال و موجک



شرحی جامع در مورد روش های تحلیلی برای حل مسائل علوم و مهندسی، که از دیدگاه یکپارچه کننده تئوری توزیع نوشته شده و با بسیاری از موضوعات مدرن که برای دست اندرکاران و محققان مهم است غنی شده است. این کتاب برای عموم مخاطبان علمی و مهندسی ایده آل است، اما از نظر ریاضی دقیق است.


توضیحاتی درمورد کتاب به خارجی

A comprehensive exposition on analytic methods for solving science and engineering problems, written from the unifying viewpoint of distribution theory and enriched with many modern topics which are important to practioners and researchers. The book is ideal for a general scientific and engineering audience, yet it is mathematically precise.



فهرست مطالب

Content: I Distributions and their Basic Applications.- 1 Basic Definitions and Operations.- 1.1 The "delta function" as viewed by a physicist and an engineer.- 1.2 A rigorous definition of distributions.- 1.3 Singular distributions as limits of regular functions.- 1.4 Derivatives
linear operations.- 1.5 Multiplication by a smooth function
Leibniz formula.- 1.6 Integrals of distributions
the Heaviside function.- 1.7 Distributions of composite arguments.- 1.8 Convolution.- 1.9 The Dirac delta on Rn, lines and surfaces.- 1.10 Linear topological space of distributions.- 1.11 Exercises.- 2 Basic Applications: Rigorous and Pragmatic.- 2.1 Two generic physical examples.- 2.2 Systems governed by ordinary differential equations.- 2.3 One-dimensional waves.- 2.4 Continuity equation.- 2.5 Green's function of the continuity equation and Lagrangian coordinates.- 2.6 Method of characteristics.- 2.7 Density and concentration of the passive tracer.- 2.8 Incompressible medium.- 2.9 Pragmatic applications: beyond the rigorous theory of distributions.- 2.10 Exercises.- II Integral Transforms and Divergent Series.- 3 Fourier Transform.- 3.1 Definition and elementary properties.- 3.2 Smoothness, inverse transform and convolution.- 3.3 Generalized Fourier transform.- 3.4 Transport equation.- 3.5 Exercises.- 4 Asymptotics of Fourier Transforms.- 4.1 Asymptotic notation, or how to get a camel to pass through a needle's eye.- 4.2 Riemann-Lebesgue Lemma.- 4.3 Functions with jumps.- 4.4 Gamma function and Fourier transforms of power functions.- 4.5 Generalized Fourier transforms of power functions.- 4.6 Discontinuities of the second kind.- 4.7 Exercises.- 5 Stationary Phase and Related Method.- 5.1 Finding asymptotics: a general scheme.- 5.2 Stationary phase method.- 5.3 Fresnel approximation.- 5.4 Accuracy of the stationary phase method.- 5.5 Method of steepest descent.- 5.6 Exercises.- 6 Singular Integrals and Fractal Calculus.- 6.1 Principal value distribution.- 6.2 Principal value of Cauchy integral.- 6.3 A study of monochromatic wave.- 6.4 The Cauchy formula.- 6.5 The Hilbert transform.- 6.6 Analytic signals.- 6.7 Fourier transform of Heaviside function.- 6.8 Fractal integration.- 6.9 Fractal differentiation.- 6.10 Fractal relaxation.- 6.11 Exercises.- 7 Uncertainty Principle and Wavelet Transforms.- 7.1 Functional Hilbert spaces.- 7.2 Time-frequency localization and the uncertainty principle.- 7.3 Windowed Fourier transform.- 7.4 Continuous wavelet transforms.- 7.5 Haar wavelets and multiresolution analysis.- 7.6 Continuous Daubechies' wavelets.- 7.7 Wavelets and distributions.- 7.8 Exercises.- 8 Summation of Divergent Series and Integrals.- 8.1 Zeno's "paradox" and convergence of infinite series.- 8.2 Summation of divergent series.- 8.3 Tiring Achilles and the principle of infinitesimal relaxation.- 8.4 Achilles chasing the tortoise in presence of head winds.- 8.5 Separation of scales condition.- 8.6 Series of complex exponentials.- 8.7 Periodic Dirac deltas.- 8.8 Poisson summation formula.- 8.9 Summation of divergent geometric series.- 8.10 Shannon's sampling theorem.- 8.11 Divergent integrals.- 8.12 Exercises.- A Answers and Solutions.- A.1 Chapter 1. Definitions and operations.- A.2 Chapter 2. Basic applications.- A.3 Chapter 3. Fourier transform.- A.4 Chapter 4. Asymptotics of Fourier transforms.- A.5 Chapter 5. Stationary phase and related methods.- A.6 Chapter 6. Singular integrals and fractal calculus.- A.7 Chapter 7. Uncertainty principle and wavelet transform.- A. 8 Chapter 8. Summation of divergent series and integrals.- B Bibliographical Notes.




نظرات کاربران