ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Distribution systems analysis and automation

دانلود کتاب تجزیه و تحلیل و اتوماسیون سیستم های توزیع

Distribution systems analysis and automation

مشخصات کتاب

Distribution systems analysis and automation

ویرایش: 2 
نویسندگان:   
سری:  
ISBN (شابک) : 9781785618727, 1785618725 
ناشر: INST OF ENGIN AND TECH 
سال نشر: 2020 
تعداد صفحات: 442 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 34 مگابایت 

قیمت کتاب (تومان) : 51,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Distribution systems analysis and automation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تجزیه و تحلیل و اتوماسیون سیستم های توزیع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Cover
Contents
List of figures
List of tables
About the author
Preface
1 Smart Grids overview
	1.1 Smart Grid for distribution systems
	1.2 Definitions of Smart Grid
	1.3 Benefits of the Smart Grid on distribution systems
		1.3.1 Enhancing reliability
		1.3.2 Improving system efficiency
		1.3.3 Distributed energy resources
		1.3.4 Optimizing asset utilization and efficient operation
	1.4 Maturity Models for Smart Grid applications
		1.4.1 Smart Grid Maturity Model
		1.4.2 Benefits of using a Smart Grid Maturity Model
		1.4.3 Genesis and components of an SGMM
		1.4.4 Development process of an SGMM
		1.4.5 Levels and domains of the SGMM
			1.4.5.1 Maturity levels of SGMM
			1.4.5.2 Domains of the SGMM
		1.4.6 Results and analysis obtained by SGMM
		1.4.7 Example case
	1.5 Prioritization in Smart Grid projects
	1.6 Cost–benefit analysis
		1.6.1 Definition of benefits
		1.6.2 Cost–benefit analysis methodologies
	Reference
	Further reading
2 Distribution automation functions
	2.1 Electrical system automation
	2.2 EMS functional scope
	2.3 DMS functional scope
	2.4 Functionality of DMS
		2.4.1 Steady-state performance improvement
			2.4.1.1 Voltage/VAR control
			2.4.1.2 Feeder reconfiguration
			2.4.1.3 Demand side management
			2.4.1.4 Advanced metering infrastructure/automatic meter reading
		2.4.2 Dynamic performance improvement
			2.4.2.1 Fault location, isolation, and service restoration
			2.4.2.2 Trouble call system
			2.4.2.3 Alarm triggering
			2.4.2.4 Work orders
	2.5 Outage management systems
	2.6 Geographic information systems
		2.6.1 AM/FM functions
		2.6.2 Database management
	2.7 Communication options
	2.8 Supervisory control and data acquisition
		2.8.1 SCADA functions
			2.8.1.1 Supervisory control
			2.8.1.2 Data acquisition and processing
			2.8.1.3 Sequence of events (SOE) registry
			2.8.1.4 Misoperation revision
			2.8.1.5 Tagging
			2.8.1.6 Alarm processing
			2.8.1.7 Historical information system
		2.8.2 System architecture
			2.8.2.1 Master station (control center)
			2.8.2.2 Human–machine interface
			2.8.2.3 Application servers
			2.8.2.4 Remote stations
			2.8.2.5 Architecture selection
			2.8.2.6 SCADA for electrical distribution networks
	2.9 Synchrophasors and its application in power systems
		2.9.1 Definition
		2.9.2 Application of PMUs
			2.9.2.1 Line parameters calculation
			2.9.2.2 State estimation
			2.9.2.3 Transmission lines thermal monitoring
			2.9.2.4 Voltage instability
			2.9.2.5 Power-transfer stability
			2.9.2.6 Power oscillations
			2.9.2.7 Mode control governor
			2.9.2.8 Distributed generation control
	Further reading
3 Fundamentals of distribution system analysis
	3.1 Electrical circuit laws
		3.1.1 Ohm\'s law
		3.1.2 Kirchhoff\'s voltage law
		3.1.3 Kirchhoff\'s current law
	3.2 Circuit theorems
		3.2.1 The ´ venin\'s theorem
		3.2.2 Star/Delta transform
		3.2.3 Superposition theorem
	3.3 Power AC circuits
	3.4 PU normalization
	3.5 Load flow
		3.5.1 Formulation of the load flow problem
		3.5.2 Newton–Raphson method
		3.5.3 Type of buses
		3.5.4 Application of the Newton–Raphson method to solve load flows
		3.5.5 Decoupling method
	3.6 Radial load flow concepts
		3.6.1 Theoretical background
		3.6.2 Distribution network models
			3.6.2.1 Balanced three-phase models
			3.6.2.2 Unbalanced three-phase network
		3.6.3 Nodes and branches identification
		3.6.4 Illustration of nodes and branches identification
		3.6.5 Algorithm to develop radial load flow
	3.7 Power system analysis tool
		3.7.1 New tendencies in PSAT applications
		3.7.2 Advanced simulations in PSATs based on load flow concept
			3.7.2.1 Optimal capacitor placement
			3.7.2.2 Optimal topology
			3.7.2.3 Optimal power flow
			3.7.2.4 Contingency analysis
	3.8 Proposed exercises
	Further reading
4 Short circuit calculation
	4.1 Nature of short circuit currents
	4.2 Calculation of fault duty values
	4.3 Fault calculation for symmetrical faults
	4.4 Symmetrical components
		4.4.1 Importance and construction of sequence networks
		4.4.2 Calculation of asymmetrical faults using symmetrical components
			4.4.2.1 Line-to-earth fault
			4.4.2.2 Line-to-line fault
			4.4.2.3 Line-to-line-to-earth fault
		4.4.3 Equivalent impedances for a power system
		4.4.4 Supplying the current and voltage signals to protection systems
	4.5 Proposed exercises
	References
	Further reading
5 Reliability of distribution systems
	5.1 Network modeling
	5.2 Network reduction
	5.3 Quality indices
	5.4 Proposed exercises
	References
	Further reading
6 Reconfiguration and restoration of distribution systems
	6.1 Optimal topology
	6.2 Location of switches controlled remotely
		6.2.1 Considerations to increase reliability
		6.2.2 Considerations to increase flexibility
	6.3 Feeder reconfiguration for improving operating conditions
	6.4 Feeder reconfiguration for service restoration
		6.4.1 Fault location, isolation, and service restoration
		6.4.2 Manual restoration vs. FLISR
		6.4.3 Restrictions on restoration
		6.4.4 FLISR central intelligence
		6.4.5 FLISR-distributed intelligence
		6.4.6 FLISR local intelligence
	Referencest
	Further reading
7 Voltage/VAR control
	7.1 Definition of voltage regulation
	7.2 Options to improve voltage regulation
	7.3 Voltage regulators
	7.4 Capacitor application in distribution systems
		7.4.1 Feeder model
		7.4.2 Capacitor location and sizing
		7.4.3 Reduction in power losses with one capacitor bank
		7.4.4 Reduction in power losses with two capacitor banks
		7.4.5 Losses reduction with three capacitor banks
		7.4.6 Consideration of several capacitor banks
		7.4.7 Capacitor sizing and location using software
	7.5 Modeling of distribution feeders, including VVC equipment
	7.6 Voltage/VAR control considering SCADA
	7.7 Requirements for Volt/VAR control
	7.8 Integrated Volt/VAR control
	7.9 Proposed exercises
	References
	Further reading
8 Harmonic analysis
	8.1 General considerations about harmonics
	8.2 Mathematical background
	8.3 Verification of harmonic values
	8.4 Parallel resonance
	8.5 Series resonance
	8.6 Validation of harmonic values
		8.6.1 Harmonic limits
		8.6.2 Voltage distortion limits
		8.6.3 Current distortion limits
	8.7 Verification of harmonic values
	8.8 Resizing and relocation of capacitor banks
	8.9 Models
		8.9.1 Harmonic sources
		8.9.2 System model
		8.9.3 Load model
		8.9.4 Branch model
	8.10 Derating transformers
	Further reading
9 Modern protection of distribution systems
	9.1 Fundamentals of overcurrent protection
		9.1.1 Protection coordination principles
		9.1.2 Criteria for setting instantaneous units
		9.1.3 Setting time-delay relays
		9.1.4 Setting overcurrent relays using software techniques
	9.2 Coordination across Dy transformers
	9.3 Protection equipment installed along the feeders
		9.3.1 Reclosers
			9.3.1.1 General
			9.3.1.2 Classification
			9.3.1.3 Applications
			9.3.1.4 Specifications
		9.3.2 Sectionalizers
			9.3.2.1 General
			9.3.2.2 Classification
			9.3.2.3 Specifications
			9.3.2.4 Applications
		9.3.3 Fuses
			9.3.3.1 General
			9.3.3.2 Applications
			9.3.3.3 Type
			9.3.3.4 Classification
			9.3.3.5 Specifications
	9.4 Setting criteria
		9.4.1 Fuse–fuse coordination
		9.4.2 Recloser–fuse coordination
			9.4.2.1 Fuse at the source side
			9.4.2.2 Fuses at the load side
		9.4.3 Recloser–sectionalizer coordination
		9.4.4 Recloser–sectionalizer–fuse coordination
		9.4.5 Recloser–recloser coordination
		9.4.6 Recloser–relay coordination
	9.5 Protection considerations when distributed generation is available
		9.5.1 Short circuit levels
		9.5.2 Synchronization
		9.5.3 Overcurrent protection
		9.5.4 Adaptive protection
	9.6 Proposed exercises
	Further reading
10 Distributed generation and energy storage systems
	10.1 Current situation of renewable generation
	10.2 Solar plants
		10.2.1 PV cell model
		10.2.2 Inverters
		10.2.3 Grid-connected and stand-alone systems
	10.3 Wind generation
		10.3.1 Drag and lift blades
		10.3.2 Rotor axis orientation
		10.3.3 Number of blades
		10.3.4 Speed of rotation
		10.3.5 Generator types
			10.3.5.1 Type 1—squirrel-cage induction generator
			10.3.5.2 Type 2—wound-rotor induction generator with variable external rotor resistance
			10.3.5.3 Type 3—doubly fed induction generator
			10.3.5.4 Type 4—full-converter wind turbine generator
		10.3.6 Control systems
			10.3.6.1 Soft starting
			10.3.6.2 Stall and pitch control
			10.3.6.3 Yaw control
		10.3.7 Wind farms
	10.4 Small hydroelectric plants
	10.5 Energy storage systems
		10.5.1 Electromechanical storage
		10.5.2 Electrochemical storage
	10.6 Proposed exercises
	References
11 Fundamentals on microgrid technology
	11.1 Introduction to microgrids
	11.2 Microgrid components
	11.3 Classification of microgrids
		11.3.1 Classification by configuration
		11.3.2 Classification by AC/DC type
		11.3.3 Classification by modes of operation
		11.3.4 Classification by feeder location
	11.4 Microgrid control
		11.4.1 Centralized control
		11.4.2 Decentralized control
	11.5 Microgrid protection
	11.6 Benefits of microgrids
		11.6.1 Economic benefits of a microgrid
		11.6.2 Technical benefits of a microgrid
		11.6.3 Environmental and social benefits of a microgrid
	11.7 Proposed exercises
	References
12 Communications in Smart Grids
	12.1 ISO–OSI model
	12.2 Communication solutions for the power system world
		12.2.1 Communication solutions in AMI
		12.2.2 Distribution network communications
			12.2.2.1 IEC 61850
			12.2.2.2 DNP3-IEEE Standard 1815
			12.2.2.3 IEC 60870-5 as the standard for remote control
	12.3 Transmission mediums
		12.3.1 Wired and electric mediums
		12.3.2 Wireless mediums
		12.3.3 Optical mediums
	12.4 Information security as the crucial element in smart networks
	12.5 Cybersecurity
	12.6 IEC 61850 overview
		12.6.1 Standard documents and features of IEC 61850
		12.6.2 System configuration language (SCL)
		12.6.3 Configuration and verification of GOOSE messages
		12.6.4 Configuration of the system
		12.6.5 System verification test
		12.6.6 Substation IT network
		12.6.7 Process bus
		12.6.8 Communications redundancy networks IEC 618590
	References
	Further reading
13 Interoperability concepts in power electric systems
	13.1 Elements required for interoperability
	13.2 Information exchange processes
	13.3 Data models and international standards
	13.4 Implementation of common information models
	References
	Further reading
Index




نظرات کاربران