دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2
نویسندگان: JUAN MANUEL GERS
سری:
ISBN (شابک) : 9781785618727, 1785618725
ناشر: INST OF ENGIN AND TECH
سال نشر: 2020
تعداد صفحات: 442
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 34 مگابایت
در صورت تبدیل فایل کتاب Distribution systems analysis and automation به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تجزیه و تحلیل و اتوماسیون سیستم های توزیع نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Contents List of figures List of tables About the author Preface 1 Smart Grids overview 1.1 Smart Grid for distribution systems 1.2 Definitions of Smart Grid 1.3 Benefits of the Smart Grid on distribution systems 1.3.1 Enhancing reliability 1.3.2 Improving system efficiency 1.3.3 Distributed energy resources 1.3.4 Optimizing asset utilization and efficient operation 1.4 Maturity Models for Smart Grid applications 1.4.1 Smart Grid Maturity Model 1.4.2 Benefits of using a Smart Grid Maturity Model 1.4.3 Genesis and components of an SGMM 1.4.4 Development process of an SGMM 1.4.5 Levels and domains of the SGMM 1.4.5.1 Maturity levels of SGMM 1.4.5.2 Domains of the SGMM 1.4.6 Results and analysis obtained by SGMM 1.4.7 Example case 1.5 Prioritization in Smart Grid projects 1.6 Cost–benefit analysis 1.6.1 Definition of benefits 1.6.2 Cost–benefit analysis methodologies Reference Further reading 2 Distribution automation functions 2.1 Electrical system automation 2.2 EMS functional scope 2.3 DMS functional scope 2.4 Functionality of DMS 2.4.1 Steady-state performance improvement 2.4.1.1 Voltage/VAR control 2.4.1.2 Feeder reconfiguration 2.4.1.3 Demand side management 2.4.1.4 Advanced metering infrastructure/automatic meter reading 2.4.2 Dynamic performance improvement 2.4.2.1 Fault location, isolation, and service restoration 2.4.2.2 Trouble call system 2.4.2.3 Alarm triggering 2.4.2.4 Work orders 2.5 Outage management systems 2.6 Geographic information systems 2.6.1 AM/FM functions 2.6.2 Database management 2.7 Communication options 2.8 Supervisory control and data acquisition 2.8.1 SCADA functions 2.8.1.1 Supervisory control 2.8.1.2 Data acquisition and processing 2.8.1.3 Sequence of events (SOE) registry 2.8.1.4 Misoperation revision 2.8.1.5 Tagging 2.8.1.6 Alarm processing 2.8.1.7 Historical information system 2.8.2 System architecture 2.8.2.1 Master station (control center) 2.8.2.2 Human–machine interface 2.8.2.3 Application servers 2.8.2.4 Remote stations 2.8.2.5 Architecture selection 2.8.2.6 SCADA for electrical distribution networks 2.9 Synchrophasors and its application in power systems 2.9.1 Definition 2.9.2 Application of PMUs 2.9.2.1 Line parameters calculation 2.9.2.2 State estimation 2.9.2.3 Transmission lines thermal monitoring 2.9.2.4 Voltage instability 2.9.2.5 Power-transfer stability 2.9.2.6 Power oscillations 2.9.2.7 Mode control governor 2.9.2.8 Distributed generation control Further reading 3 Fundamentals of distribution system analysis 3.1 Electrical circuit laws 3.1.1 Ohm\'s law 3.1.2 Kirchhoff\'s voltage law 3.1.3 Kirchhoff\'s current law 3.2 Circuit theorems 3.2.1 The ´ venin\'s theorem 3.2.2 Star/Delta transform 3.2.3 Superposition theorem 3.3 Power AC circuits 3.4 PU normalization 3.5 Load flow 3.5.1 Formulation of the load flow problem 3.5.2 Newton–Raphson method 3.5.3 Type of buses 3.5.4 Application of the Newton–Raphson method to solve load flows 3.5.5 Decoupling method 3.6 Radial load flow concepts 3.6.1 Theoretical background 3.6.2 Distribution network models 3.6.2.1 Balanced three-phase models 3.6.2.2 Unbalanced three-phase network 3.6.3 Nodes and branches identification 3.6.4 Illustration of nodes and branches identification 3.6.5 Algorithm to develop radial load flow 3.7 Power system analysis tool 3.7.1 New tendencies in PSAT applications 3.7.2 Advanced simulations in PSATs based on load flow concept 3.7.2.1 Optimal capacitor placement 3.7.2.2 Optimal topology 3.7.2.3 Optimal power flow 3.7.2.4 Contingency analysis 3.8 Proposed exercises Further reading 4 Short circuit calculation 4.1 Nature of short circuit currents 4.2 Calculation of fault duty values 4.3 Fault calculation for symmetrical faults 4.4 Symmetrical components 4.4.1 Importance and construction of sequence networks 4.4.2 Calculation of asymmetrical faults using symmetrical components 4.4.2.1 Line-to-earth fault 4.4.2.2 Line-to-line fault 4.4.2.3 Line-to-line-to-earth fault 4.4.3 Equivalent impedances for a power system 4.4.4 Supplying the current and voltage signals to protection systems 4.5 Proposed exercises References Further reading 5 Reliability of distribution systems 5.1 Network modeling 5.2 Network reduction 5.3 Quality indices 5.4 Proposed exercises References Further reading 6 Reconfiguration and restoration of distribution systems 6.1 Optimal topology 6.2 Location of switches controlled remotely 6.2.1 Considerations to increase reliability 6.2.2 Considerations to increase flexibility 6.3 Feeder reconfiguration for improving operating conditions 6.4 Feeder reconfiguration for service restoration 6.4.1 Fault location, isolation, and service restoration 6.4.2 Manual restoration vs. FLISR 6.4.3 Restrictions on restoration 6.4.4 FLISR central intelligence 6.4.5 FLISR-distributed intelligence 6.4.6 FLISR local intelligence Referencest Further reading 7 Voltage/VAR control 7.1 Definition of voltage regulation 7.2 Options to improve voltage regulation 7.3 Voltage regulators 7.4 Capacitor application in distribution systems 7.4.1 Feeder model 7.4.2 Capacitor location and sizing 7.4.3 Reduction in power losses with one capacitor bank 7.4.4 Reduction in power losses with two capacitor banks 7.4.5 Losses reduction with three capacitor banks 7.4.6 Consideration of several capacitor banks 7.4.7 Capacitor sizing and location using software 7.5 Modeling of distribution feeders, including VVC equipment 7.6 Voltage/VAR control considering SCADA 7.7 Requirements for Volt/VAR control 7.8 Integrated Volt/VAR control 7.9 Proposed exercises References Further reading 8 Harmonic analysis 8.1 General considerations about harmonics 8.2 Mathematical background 8.3 Verification of harmonic values 8.4 Parallel resonance 8.5 Series resonance 8.6 Validation of harmonic values 8.6.1 Harmonic limits 8.6.2 Voltage distortion limits 8.6.3 Current distortion limits 8.7 Verification of harmonic values 8.8 Resizing and relocation of capacitor banks 8.9 Models 8.9.1 Harmonic sources 8.9.2 System model 8.9.3 Load model 8.9.4 Branch model 8.10 Derating transformers Further reading 9 Modern protection of distribution systems 9.1 Fundamentals of overcurrent protection 9.1.1 Protection coordination principles 9.1.2 Criteria for setting instantaneous units 9.1.3 Setting time-delay relays 9.1.4 Setting overcurrent relays using software techniques 9.2 Coordination across Dy transformers 9.3 Protection equipment installed along the feeders 9.3.1 Reclosers 9.3.1.1 General 9.3.1.2 Classification 9.3.1.3 Applications 9.3.1.4 Specifications 9.3.2 Sectionalizers 9.3.2.1 General 9.3.2.2 Classification 9.3.2.3 Specifications 9.3.2.4 Applications 9.3.3 Fuses 9.3.3.1 General 9.3.3.2 Applications 9.3.3.3 Type 9.3.3.4 Classification 9.3.3.5 Specifications 9.4 Setting criteria 9.4.1 Fuse–fuse coordination 9.4.2 Recloser–fuse coordination 9.4.2.1 Fuse at the source side 9.4.2.2 Fuses at the load side 9.4.3 Recloser–sectionalizer coordination 9.4.4 Recloser–sectionalizer–fuse coordination 9.4.5 Recloser–recloser coordination 9.4.6 Recloser–relay coordination 9.5 Protection considerations when distributed generation is available 9.5.1 Short circuit levels 9.5.2 Synchronization 9.5.3 Overcurrent protection 9.5.4 Adaptive protection 9.6 Proposed exercises Further reading 10 Distributed generation and energy storage systems 10.1 Current situation of renewable generation 10.2 Solar plants 10.2.1 PV cell model 10.2.2 Inverters 10.2.3 Grid-connected and stand-alone systems 10.3 Wind generation 10.3.1 Drag and lift blades 10.3.2 Rotor axis orientation 10.3.3 Number of blades 10.3.4 Speed of rotation 10.3.5 Generator types 10.3.5.1 Type 1—squirrel-cage induction generator 10.3.5.2 Type 2—wound-rotor induction generator with variable external rotor resistance 10.3.5.3 Type 3—doubly fed induction generator 10.3.5.4 Type 4—full-converter wind turbine generator 10.3.6 Control systems 10.3.6.1 Soft starting 10.3.6.2 Stall and pitch control 10.3.6.3 Yaw control 10.3.7 Wind farms 10.4 Small hydroelectric plants 10.5 Energy storage systems 10.5.1 Electromechanical storage 10.5.2 Electrochemical storage 10.6 Proposed exercises References 11 Fundamentals on microgrid technology 11.1 Introduction to microgrids 11.2 Microgrid components 11.3 Classification of microgrids 11.3.1 Classification by configuration 11.3.2 Classification by AC/DC type 11.3.3 Classification by modes of operation 11.3.4 Classification by feeder location 11.4 Microgrid control 11.4.1 Centralized control 11.4.2 Decentralized control 11.5 Microgrid protection 11.6 Benefits of microgrids 11.6.1 Economic benefits of a microgrid 11.6.2 Technical benefits of a microgrid 11.6.3 Environmental and social benefits of a microgrid 11.7 Proposed exercises References 12 Communications in Smart Grids 12.1 ISO–OSI model 12.2 Communication solutions for the power system world 12.2.1 Communication solutions in AMI 12.2.2 Distribution network communications 12.2.2.1 IEC 61850 12.2.2.2 DNP3-IEEE Standard 1815 12.2.2.3 IEC 60870-5 as the standard for remote control 12.3 Transmission mediums 12.3.1 Wired and electric mediums 12.3.2 Wireless mediums 12.3.3 Optical mediums 12.4 Information security as the crucial element in smart networks 12.5 Cybersecurity 12.6 IEC 61850 overview 12.6.1 Standard documents and features of IEC 61850 12.6.2 System configuration language (SCL) 12.6.3 Configuration and verification of GOOSE messages 12.6.4 Configuration of the system 12.6.5 System verification test 12.6.6 Substation IT network 12.6.7 Process bus 12.6.8 Communications redundancy networks IEC 618590 References Further reading 13 Interoperability concepts in power electric systems 13.1 Elements required for interoperability 13.2 Information exchange processes 13.3 Data models and international standards 13.4 Implementation of common information models References Further reading Index