دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Elke Buschbeck. Michael Bok
سری: Springer Series in Vision Research
ISBN (شابک) : 3031232151, 9783031232152
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 318
[319]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Distributed Vision: From Simple Sensors to Sophisticated Combination Eyes به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب دید توزیع شده: از حسگرهای ساده تا چشم های ترکیبی پیچیده نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این جلد به بررسی تنوع چشم های پراکنده و دیگر سیستم های بصری غیر معمول در طبیعت می پردازد. این مضامین منحصربهفرد اپتیک، پردازش عصبی و کنترل رفتاری را که از این سیستمهای بصری با چشمهای متعارفتر بیرون میآیند، مقایسه میکند. این جلد سعی دارد به تعدادی از سؤالات در مورد سیستم های بصری توزیع شده پاسخ دهد. سیستم های بصری توزیع شده برای چه چیزهایی خوب هستند، چگونه عمل می کنند و چرا به طور مستقل در بسیاری از فیلاها بوجود آمده اند؟ چرا طرح های چشم و آرایش سیستم بینایی در بی مهرگان بسیار متنوع تر است؟ هر فصل شامل مروری بر سیستمهای بینایی موجود در گروه حیوانات است، بینایی را با اکولوژی مرتبط میکند و رویکردی مقایسهای دارد.
This volume explores the diversity of distributed eyes and other unusual visual systems in nature. It compares the unique themes of optics, neural processing, and behavioral control that emerge from these visual systems with more-canonical eyes. This volume attempts to answer a number of questions about distributed visual systems. What are distributed visual systems good for, how do they function, and why have they arisen independently in so many phyla? Why are eye designs and visual system arrangements much more diverse in invertebrates? Each chapter includes an overview of the visual systems that exist in their group of animals, relates vision to ecology, and takes a comparative approach.
Preface Contents Chapter 1: On Distributed Visual Systems 1.1 Introduction 1.2 From a Simple Light Sensor to a Sophisticated Eye 1.3 Sophisticated Vision Through a Distributed Visual System 1.4 Pros and Cons of Distributed Vision (Or “To Evolve a Centralized or Distributed Visual System”) 1.5 Survey of Diverse Distributed Visual Systems 1.5.1 Cnidarians 1.5.2 Echinoderms (Deuterostomes) 1.5.3 Polychaetes (Annelida) 1.5.4 Bivalvia (Mollusks) 1.5.5 Chitons (Mollusks) 1.5.6 Myriapoda (Arthropoda) 1.5.7 Pancrustacea (Arthropoda) 1.5.8 Arachnida (Arthropoda) 1.6 Summary/Conclusions References Chapter 2: Cnidarians: Diversity and Evolution of Cnidarian Visual Systems 2.1 Introduction 2.2 Cnidarian Phylogenetic Relationships 2.3 Cnidarian Photobiology 2.3.1 Cnidarian Opsins 2.3.2 Cnidarian Phototransduction and the Origins of Metazoan Visual Cascades 2.3.3 Cnidarian Photoreceptor Neurons and Distributed Sensory Systems 2.3.4 Cnidarian Eyes 2.3.5 Distributed Visual Systems in Cnidarians 2.4 Photosensory Behaviors in Cnidarian Larvae 2.4.1 Anthozoan Larvae 2.4.2 Medusozoan Larvae 2.5 Photosensory Behaviors in Adult Cnidarians 2.5.1 Anthozoan Adults 2.5.2 Medusozoan Adults 2.6 Future Directions References Chapter 3: Extraocular Vision in Echinoderms 3.1 Introduction 3.2 A Brief History of Extraocular Photoreception and Vision in Echinoderms 3.3 Visual Behavior 3.3.1 Orientation to Static Stimuli 3.3.2 Shadows and Looms 3.4 Physiology 3.4.1 Sea Urchins 3.4.2 Brittle Stars 3.5 Photoreceptors 3.5.1 Molecular Characteristics 3.5.2 Sea Urchin Opsins 3.5.3 Brittle Star Opsins 3.5.4 Opsins Across Echinodermata 3.5.5 Retinal Determinant Genes and Transcription Factors 3.6 Achieving Spatial Resolution: Proposed Mechanisms 3.6.1 Screening 3.6.2 Limits of Resolution 3.6.3 Optics 3.7 Nervous Systems and Processing 3.8 Evolution of Extraocular Vision 3.9 Future Research and Challenges References Chapter 4: Dispersed Vision in Starfish: A Collection of Semi-independent Arms 4.1 Introduction 4.2 The Starfish Eyes 4.2.1 Low Pass Filtering in Starfish Eyes 4.2.2 Opsins and Spectral Sensitivity 4.3 Behavioral Repertoire of Starfish 4.4 Light Guided Behaviors 4.4.1 Shadow Response and Extraocular Photoreception 4.4.2 Visually Guided Habitat Detection: Proof of Image Forming Eyes 4.4.3 Eye Movements and Active Vision 4.4.4 Other Starfish Behaviors Putatively Involving Vision 4.5 Multimodal Control of Behavior 4.6 Processing of the Visual Information 4.6.1 Structure of the Starfish CNS 4.6.2 The Ectoneural Part of the RNC 4.6.3 Supporting Cells 4.6.4 Specializations in A. planci: Neural Bulbs on the RNC 4.7 Concluding Remarks References Chapter 5: Distributed Visual Systems in Pteriomorphian Bivalves 5.1 Introduction 5.2 The Eyes of Pteriomorphian Bivalves 5.2.1 Pectinida: Mirror-Based Eyes 5.2.1.1 Phylogenetic Distribution and General Description 5.2.1.2 Morphology and Optics of Mirror-Based Eyes 5.2.1.3 Cellular and Molecular Components of Mirror-Based Eyes 5.2.1.4 Development of Mirror-Based Eyes 5.2.2 Limida: Invaginated Eyes 5.2.2.1 Phylogenetic Distribution and General Description 5.2.2.2 Morphology of Invaginated Eyes 5.2.2.3 Cellular and Molecular Components of Invaginated Eyes 5.2.3 Ostreida: Cap Eyespots 5.2.4 Arcida: Compound Eyes and Pigmented Cups 5.2.4.1 Phylogenetic Distribution and General Description 5.2.4.2 Morphology and Components of Compound Eyes 5.2.4.3 Morphology and Components of Pigmented Cups 5.3 Visual Ecology of Pteriomorphian Bivalves 5.3.1 Visual Ecology of Scallops (Pectinida) 5.3.1.1 Visual Performance of the Mirror-Based Eyes of Scallops 5.3.1.2 Visually Influenced Behaviors of Scallops 5.3.2 Visual Ecology of File Clams (Limida) 5.3.3 Visual Ecology of Oysters (Ostreida) 5.3.4 Visual Ecology of Ark Clams (Arcida) 5.4 Neuroanatomy and Visual Processing in Pteriomorphia 5.4.1 Neuroanatomy of Scallops (Pectinida) 5.4.1.1 Neuroanatomical Structures of Pectinids 5.4.1.2 Visual Processing in Scallops 5.4.2 Neuroanatomy of File Clams (Limida) 5.4.3 Neuroanatomy of Oysters (Osterida) 5.4.4 Neuroanatomy of Ark Clams (Arcida) 5.5 Evolution of Distributed Visual Systems in Pteriomorphia 5.5.1 Why Do Some Pteriomorphian Bivalves Have Eyes When Many Do Not? 5.5.2 Why Do Pteriomorphian Bivalves Have so Many Mantle Eyes? 5.5.3 Why Do the Eyes of Pteriomorphians Tend to Include Two Different Types of Photoreceptors? 5.5.4 How Do Pteriomorphian Bivalves Process Visual Information? 5.5.5 Future Directions References Chapter 6: Distributed Light-Sensing Systems in Chitons 6.1 Introduction to Chitons 6.2 Structure and Function of Light-Sensing Organs in Chitons 6.2.1 Aesthetes 6.2.2 Eyespots 6.2.3 Shell Eyes 6.2.4 Other Light-Sensing Organs in Chitons 6.3 Light-Influenced Behaviors in Chitons 6.3.1 Light-Influenced Behaviors Observed Across Chitons 6.3.2 Light-Influenced Behaviors in Chitons with Eyespots 6.3.3 Light-Influenced Behaviors in Chitons with Shell Eyes 6.4 Neuroanatomy of Chitons 6.5 Function and Evolution of Distributed Visual Systems in Chitons 6.5.1 How Do Light-Sensing Structures Relate to Light-Influenced Behaviors in Chitons? 6.5.2 Do Ecological Factors Help Explain Why Some Chitons Have Eyes When Many Do Not? 6.5.3 How Do Chitons Process Visual Information? 6.6 Future Directions References Chapter 7: The Visual System of Myriapoda 7.1 Introduction 7.2 Ommatidial Ground Pattern and Diverging Pathways 7.2.1 Lateral Eyes in Scutigeromorpha (Chilopoda) 7.2.2 Lateral Eyes (Cup-Shaped Ommatidia) in Pleurostigmophora (Chilopoda) 7.2.3 Lateral Eyes in Penicillata (Diplopoda) 7.2.4 Lateral Eyes in Chilognatha (Diplopoda) 7.3 Eye Development 7.4 Visual Neuropils Associated with Lateral Eyes 7.5 Intracerebral Photoreceptors 7.6 Visual Ecology, Physiology, and Behavior References Chapter 8: Insect Dorsal Ocelli: A Brief Overview 8.1 Introduction 8.2 Ocellar Structure and Neuronal Organisation 8.2.1 Ocellar Lenses 8.2.2 Field of View 8.2.3 Focal Plane 8.2.4 Internal Organisation 8.2.5 Neuronal Connectivity 8.3 Function 8.3.1 Phototactic Organs 8.3.2 Timing of Activity 8.3.3 Flight Stabilisation 8.3.4 Orientation 8.4 Conclusions References Chapter 9: The Cornucopia of Copepod Eyes: The Evolution of Extreme Visual System Novelty 9.1 Introduction 9.2 Visually Mediated Behaviors 9.3 Visual Function 9.4 Copepod Eye Morphology – Overview 9.4.1 Retinular Cells 9.4.2 Pigment Cells 9.4.3 Lenses and Other Light-Refracting Structures 9.4.4 Light-Reflecting Structures 9.4.5 Nonvisual Copepod Light-Sensing Structures: Gicklhorn’s Organ 9.5 Evolutionary Diversity of Copepod Eyes 9.5.1 Platycopioida (No Eyes) 9.5.2 Calanoida 9.5.2.1 Phaennidae (Reflector Type) 9.5.2.2 Aetideidae (Enlarged Type – Paired Ocelli) 9.5.2.3 Pontellidae (Y-Eye Type) 9.5.2.4 Candaciidae (Enlarged Type) 9.5.2.5 Centropagidae (Enlarged Type – Unpaired Ocellus) 9.5.2.6 Acartiidae (Enlarged Type – Whole Eye) 9.5.3 Misophrioida (No Eyes) 9.5.4 Gelyelloida (No Eyes) 9.5.5 Cyclopoida 9.5.5.1 Thaumatopsyllidae (Y-Eye Type) 9.5.5.2 Cyclopidae (Enlarged Type – Paired Ocelli) 9.5.5.3 Ergasilida (Sapphirina, Corycaeus, and Copilia) (Telescopic Type) 9.5.6 Canuelloida 9.5.7 Harpacticoida 9.5.7.1 Miraciidae (Telescopic Type) 9.5.8 Mormonilloida (No Eyes) 9.5.9 Monstrilloida 9.5.10 Siphonostomatoida 9.5.10.1 Caligidae (Telescopic Type) 9.5.10.2 Pennellidae (Enlarged – Paired Ocelli) 9.6 Copepod Opsin Diversity 9.7 Conclusions References Chapter 10: Distributed Vision in Spiders 10.1 Why Spiders? 10.2 Jumping Spiders: A High-Performing, Compact Distributed Visual System 10.2.1 Vision-Based Behavior of Jumping Spiders 10.2.1.1 Methods for Studying Vision-Based Behavior in Jumping Spiders 10.2.1.2 Behavioral Contexts in Which Jumping Spiders Use Vision 10.2.2 Modular Vision: Two Eye Types 10.2.2.1 Secondary Eyes of Jumping Spiders 10.2.2.2 Principal Eyes of Jumping Spiders 10.2.2.3 Division of Labor in Jumping Spider Eyes 10.2.3 Next Steps in the Study of Salticid Vision 10.3 Distributed Visual Systems Across the Araneae 10.3.1 Vision-Based Behavior Across Spiders 10.3.2 Origin and Evolution of Spider Eyes 10.3.2.1 Origin and Development 10.3.2.2 Eye Arrangement and Visual Fields 10.3.3 Structure and Optical Performance of Eyes 10.3.3.1 Corneal Lens Properties 10.3.3.2 Resolution 10.3.3.3 Sensitivity 10.3.3.4 Secondary Eye Tapeta 10.3.3.5 Trade-Off Between Resolution and Sensitivity 10.3.3.6 Specializations of Retinal Anatomy 10.3.4 Physiological Specializations of Photoreceptors 10.3.4.1 Opsin Evolution 10.3.4.2 Temporal Resolution 10.3.4.3 Spectral Sensitivity 10.3.4.4 Polarization Sensitivity 10.3.5 Control and Cooperation of Eyes 10.3.5.1 Movable Principal-Eye Retinas 10.3.5.2 Interaction of Eyes 10.3.6 Neurobiology of Vision 10.3.6.1 Evolution of Spider Brains 10.3.6.2 Principal- and Secondary-Eye Pathways 10.3.6.3 Variation in Neuromorphology 10.4 Conclusions and Future Directions References Index