دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Anisur Rahaman Molla, Gokarna Sharma, Pradeep Kumar, Sanjay Rawat سری: Lecture Notes in Computer Science, 13776 ISBN (شابک) : 3031248473, 9783031248474 ناشر: Springer سال نشر: 2023 تعداد صفحات: 395 [396] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 37 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Distributed Computing and Intelligent Technology: 19th International Conference, ICDCIT 2023, Bhubaneswar, India, January 18–22, 2023, Proceedings به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب محاسبات توزیع شده و فناوری هوشمند: نوزدهمین کنفرانس بین المللی، ICDCIT 2023، Bhubaneswar، هند، 18 تا 22 ژانویه 2023، مجموعه مقالات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب مجموعه مقالات نوزدهمین کنفرانس بین المللی محاسبات توزیع شده و فناوری هوشمند، ICDCIT 2023 است که در ژانویه 2023 در بوبانشوار، هند برگزار شد.
< span> 20 مقاله کامل و 9 مقاله کوتاه ارائه شده در این جلد به دقت بررسی و از بین 55 مقاله ارسالی انتخاب شدند. مقالات در بخشهای موضوعی زیر سازماندهی شدهاند: گفتگوهای دعوت شده؛ محاسبات توزیع شده؛ فناوری هوشمند.
This book constitutes the proceedings of the 19th International Conference on Distributed Computing and Intelligent Technology, ICDCIT 2023, which was held in Bhubaneswar, India, in January 2023.
The 20 full papers and 9 short papers presented in this volume were carefully reviewed and selected from 55 submissions. The papers are organized in the following topical sections: Invited Talks; Distributed Computing; Intelligent Technology.
Preface Organization Abstracts of Invited Talks Correctness Conditions for Cross-Chain Transactions Harnessing Concurrency in Multicore Systems From File Transfers to Streaming: Enabling Distributed Science in the Exascale Era Three Vignettes from the Distributed Trust Paradigm of Computing Machine Learning for Emotion Prediction, Ideology Detection and Polarization Analysis Using COVID-19 Tweets AI for Personalized Education Attention-Based Representational Learning for Social Network Analysis Contents Distributed Computing Filling MIS Vertices of a Graph by Myopic Luminous Robots 1 Introduction 1.1 Motivation 1.2 Related Works 1.3 Contributions 2 Model 3 Algorithm for MIS Filling with Single Door 3.1 Preliminaries 3.2 IND Algorithm 3.3 Analysis of IND Algorithm 4 Algorithm for MIS Filling with Multiple Doors 4.1 The MULTIND Algorithm 4.2 Analysis of MULTIND Algorithm 5 Discussion 6 Conclusion References WANMS: A Makespan, Energy, and Reliability Aware Scheduling Algorithm for Workflow Scheduling in Multi-processor Systems 1 Introduction 2 Systems Model and Problem Formulation 3 Proposed Scheduling Algorithm 3.1 Task Ordering 3.2 Processor Allocation 3.3 Analysis Based on the Parameters of Algorithm 1 3.4 Complexity Analysis 4 Experimental Evaluation 4.1 Task Graphs 4.2 Experimental Setup 4.3 Algorithms Compared 4.4 Experimental Description 4.5 Experimental Result with Discussions 5 Concluding Remarks References Multiple Criteria Decision Making-Based Task Offloading and Scheduling in Fog Environment 1 Introduction 2 System Model 2.1 Task Offloading and Scheduling Model 2.2 Delay Model 2.3 Energy Model 2.4 Reliability Model 3 Proposed Method 3.1 Evaluate Relative Weights Using EWM 3.2 TOPSIS for Ranking the FNs 4 Migration 5 Results and Discussions 5.1 Task Offloading 5.2 Task Scheduling 5.3 Complexity 6 Conclusion References Static Data Race Detection in Multi-task Programs for Industrial Robots 1 Introduction 2 Related Work 3 Multi-task Industrial Robot Programs: An Overview 3.1 Data Races in Multi-task Programs 4 Semantics of Multi-task Programs and Data Races 4.1 Data Races in Multi-task Programs 5 Static Race Detection Algorithm 5.1 Rules for Checking Occurs-in-Between Property 5.2 Proof of Soundness of the Rules 5.3 Implementation 6 Experimental Results 7 Conclusion and Future Work References Ordered Scheduling in Control-Flow Distributed Transactional Memory 1 Introduction 2 Model and Preliminaries 3 Impossibility Result 4 Offline Algorithms 5 Partial Dynamic Algorithm 6 Fully Dynamic Algorithm 7 Evaluation 8 Concluding Remarks References Fault-Tolerant Graph Realizations in the Congested Clique, Revisited 1 Introduction and Related Work 2 Model and Definitions 3 Preliminary: The Havel-Hakimi Algorithm 4 Graph Realization with Faults 4.1 Algorithm 4.2 Lower Bound 5 Conclusion and Future Work References A Perspective of IP Lookup Approach Using Graphical Processing Unit (GPU) 1 Introduction 2 Related Works 3 Proposed Solution for GPU Based IP Lookup 4 Results and Discussion 5 Conclusion References Intelligent Technology MCMARS: Hybrid Multi-criteria Decision-Making Algorithm for Recommender Systems of Mobile Applications 1 Introduction 2 Related Work 3 Proposed Mobile App Recommender System (MCMARS) Design 3.1 Data Extraction and Classification 3.2 Criterion Generation 3.3 Recommendation Methodology 4 Validation of MCMARS with COVID-19 Mobile Apps 5 Results and Discussion 5.1 Criteria Analysis 5.2 Comparison of Proposed Method with Other MCDM Techniques 6 Conclusion and Future Work References Opinion Maximization in Signed Social Networks Using Centrality Measures and Clustering Techniques 1 Introduction 2 Related Work 3 Proposed Approaches of OM 3.1 Diffusion Model 3.2 Centrality Measures Based Approach 3.3 Community Detection Based Approach 3.4 Centrality Measures and Community Structure Based Approach 3.5 Example Network 4 Experimental Results 4.1 Datasets 4.2 Parameters 4.3 Experiments 4.4 Results 4.5 Inferences 5 Conclusions References Detection of Object-Based Forgery in Surveillance Videos Utilizing Motion Residual and Deep Learning 1 Introduction 2 Related Works 3 Proposed Method 3.1 Motion Residual Extraction 3.2 Deep Learning Model 4 Experimental Results and Discussion 4.1 Evaluation Parameters and Experimental Results 4.2 Comparison with State-of-the-Art 5 Conclusion References Mapped-RRT* a Sampling Based Mobile Path Planner Algorithm 1 Introduction 2 Related Works 3 Methodology 3.1 Combined Sensor Calibration 3.2 Simultaneous Mapping with Path Search 3.3 Algorithmic Description of Mapped-RRT* (Rapidly Exploring Random Trees with Simultaneous Mapping) 4 Experiment Analysis and Results 4.1 Combined Visual Data Perception 4.2 Environment Mapping Results 4.3 Comparative Analysis of Proposed Method with Conventional Techniques 5 Conclusion References Intelligent Optimization Algorithms for Disruptive Anti-covering Location Problem 1 Introduction 2 Problem Definition 3 DDE Approach for DACLP 3.1 Solution Representation and Fitness 3.2 Generating Initial Population 3.3 DDE Framework 3.4 Mutation 3.5 Crossover 3.6 Repair 3.7 Population Replacement Model 4 GA Approach for DACLP 4.1 Solution Representation and Fitness 4.2 Initial Solution Generation 4.3 Selection 4.4 Crossover 4.5 Mutation 4.6 Population Replacement Model 4.7 Local Search 5 Experimental Results 6 Conclusions and Future Work References Enhancing Robustness of Malware Detection Model Against White Box Adversarial Attacks 1 Introduction 2 Related Work 3 Background and Preliminaries 3.1 Deep Neural Network (DNN) Based Models 3.2 Adversarial Attack 3.3 Existing Mitigation Techniques Against White-Box Attack 4 Proposed Approach 4.1 System Model 4.2 Malware Detection and Classification Model 4.3 Attack Model 4.4 Adversarial Defense Model 4.5 System Security Model 5 Experiments and Results 5.1 Datasets 5.2 Performance of Malware Detection and Classification Model 5.3 Threat of FGSM Attack 5.4 Defensive Capabilities of Various Mitigation Methods 6 Conclusion 7 Future Work References Early Detection of Covid Using Spectral Analysis of Cough and Deep Convolutional Neural Network 1 Introduction 2 Literature Review 3 Proposed System 3.1 Preprocessing 3.2 Dynamic Feature Extraction 3.3 Prediction and Classification 4 Implementation Methodology 4.1 Activation ReLU 4.2 Dense Layer 4.3 Sigmoid Activity 4.4 Dropout Layer 4.5 Convolution Layer 4.6 Max-Pool 4.7 Training and Validation 5 Results and Discussion 6 Conclusion References Analysis of Tweets with Emoticons for Sentiment Detection Using Classification Techniques 1 Introduction 2 Related Work 3 Methodology 3.1 Data Gathering 3.2 Data Preprocessing 3.3 Model Training 3.4 Result Validation 3.5 Results and Inferences 4 Algorithms Used 4.1 Bernoulli Naive Bayes 4.2 Linear Support Vector 4.3 Logistic Regression 4.4 XGBoost 5 Discussion 6 Conclusion and Future Work References Fine-Tuning of Multilingual Models for Sentiment Classification in Code-Mixed Indian Language Texts 1 Introduction 2 Related Literature 3 Methodology 3.1 Baseline 3.2 Transformer Architecture 3.3 Cross-Lingual Language Model (XLM) 4 Experimental Setup 4.1 Dataset 4.2 Comparision on Existing Methods 4.3 XLM Model 4.4 XLM Optimisation by Fine Tuning Parameters on Kannada-English Dataset 5 Results and Discussion 5.1 Performance of Various ML Methods 5.2 Evaluation of Model's Performance on Different Types of Code-Switching 6 Conclusion and Future Work References Landslide Classification Using Deep Convolutional Neural Network with Synthetic Minority Oversampling Technique 1 Introduction 2 Related Studies 3 Materials and Methods 3.1 Dataset 3.2 Normalization 3.3 Oversampling 3.4 Baselines 4 Proposed Approach 5 Experiment 6 Results and Discussion 7 Conclusions References ALPR - An Intelligent Approach Towards Detection and Recognition of License Plates in Uncontrolled Environments 1 Introduction 2 Materials 2.1 You Only Look Once (YOLO) 2.2 Spatial Transformer Network 3 Proposed Methodology 3.1 License Plate Detection 3.2 Spatial Transformer Network (STN) 3.3 Character Recognition 4 Results and Discussion 4.1 Data Sets Description 4.2 Result Analysis 5 Conclusion References Towards Railway Cable Infrastructure Protection: Turning Cross-Sectional Explorative Analytics to Answers 1 Introduction 1.1 Research Questions and Contributions 2 Introduction 2.1 Railway Infrastructure Protection Overview 2.2 State-of-the-Art 2.3 Expectation Maximisation Clustering 3 Proposed Smart Cross-Sectional Explorative Analytics for RCIP 3.1 Problem Definition 3.2 Smart Cross-Sectional Explorative Analytics Detection Model 4 Experimental Evaluations 4.1 Experimental Setup 4.2 Experiment 1: Real-Life Cable Behaviour from Multiple Sensors 4.3 Experiment 2: Cable Behaviour Analytics Using Publicly Available Sensors Data 4.4 Performance Evaluations 5 Concluding Remarks References Designing an Intangible Tele-Interaction for Point-to-Point Robot Control Using Coercive Gesture Filtering 1 Introduction 1.1 Intangible Teleoperated Control System 1.2 Leap Motion 2 Related Works 3 Methodologies 3.1 Technical Set-Up 3.2 Data Fetching 3.3 Data Transmission 3.4 Filtering Coercive Gestures 4 Experiment and Result Analysis 5 Conclusion References Sentiment Analytics for Crypto Pre and Post Covid: Topic Modeling 1 Introduction 2 Literature Survey 3 Data and Methodology 4 Results 5 Conclusion and Discussion References A Rough Set Based Approach to Compute Impact of Non Academic Parameters on Academic Performance 1 Introduction 2 Literature Review 3 Descriptive Statistical Analysis and Hypothesis Testing 4 Rough Set Based Approach to Compute Most Affecting Parameters 4.1 Regression Model 4.2 Rough Set Model 4.3 Proposed Algorithm for Feature Reduction 4.4 Results 5 Density Based Clustering Approach 6 Conclusions References Varta Rasa - A Simple and Accurate System for Emotion Recognition in Conversations 1 Introduction 2 Proposed Varta Rasa Architecture 3 Experimental Setting 4 Results and Discussion 5 Conclusion References An Optimal Approach for Multi-class Object Detection 1 Introduction 2 Related Work 3 Methodology 4 Result and Analysis 5 Conclusion References Performance Analysis of Routing Protocol for Low Power and Lossy Networks (RPL) for IoT Environment 1 Introduction 2 Related Work 3 Proposed Work 4 Simulation and Network Setup 5 Results and Analysis 6 Conclusion and Future Scope References A Novel Image Steganography Technique Using AES Encryption in DCT Domain 1 Introduction 1.1 Discrete Cosine Transform 2 Relevant Work 3 Proposed Technique 3.1 Embedding 3.2 Extraction 4 Results 4.1 Tables 5 Conclusion References Text Classification Using Correlation Based Feature Selection on Multi-layer ELM Feature Space 1 Introduction 2 Methodology 3 Analysis of Experimental Results 3.1 Discussion 4 Conclusion and Future Work References Multi-objective Pelican Optimization Algorithm for Engineering Design Problems 1 Introduction 2 Pelican Optimization Algorithm 3 The Proposed MOPOA 4 Results and Discussions 4.1 Four-bar Truss Design Problem 4.2 Speed Reducer Design Problem 5 Conclusion References Prediction of Accident and Accident Severity Based on Heterogeneous Data 1 Motivation 2 Previous Work 3 Proposed Solution 4 Materials, Procedure 5 Results 6 Conclusion 7 Limitations and Future Scope References Author Index