دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Satya Prakash Yadav (editor), Dharmendra Prasad Mahato (editor), Nguyen Thi Dieu Linh (editor) سری: ISBN (شابک) : 2020028557, 9781003038467 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 337 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 48 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Distributed Artificial Intelligence: A Modern Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش مصنوعی توزیع شده: رویکردی مدرن نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Half Title Series Page Title Page Copyright Page Table of Contents Preface Editors Contributors Chapter 1 Distributed Artificial Intelligence 1.1 Introduction 1.2 Why Distributed Artificial Intelligence? 1.3 Characteristics of Distributed Artificial Intelligence 1.4 Planning of DAI Multi-Agents 1.5 Coordination among Multi-Agents 1.5.1 Forestalling Mobocracy or Confusion 1.5.2 Meeting Overall Requirements 1.5.3 Distributed Skill, Resources, and Data 1.5.4 Dependency among the Agents 1.5.5 Efficiency 1.6 Communication Modes among the Agents 1.7 Categories of RPC 1.8 Participation of Multi-Agents 1.8.1 Fully Cooperative Architecture 1.8.2 Partial Cooperative Architecture 1.9 Applications of DAI 1.9.1 Electricity Distribution 1.9.2 Telecommunications Systems 1.9.3 Database Technologies for Service Order Processing 1.9.3.1 Concurrent Engineering 1.9.3.2 Weather Monitoring 1.9.3.3 Intelligent Traffic Control 1.10 Conclusion References Chapter 2 Intelligent Agents 2.1 Introduction 2.2 Need for Evolving Agents in Evolutionary Software Systems 2.2.1 Change of Requirements 2.2.2 Need for an Evolving System 2.2.3 Software System 2.2.4 Evolving Software System 2.3 Agents 2.3.1 Evolving Agents 2.3.2 Agent Architecture 2.3.3 Application Domain 2.3.3.1 Types of Agents References Chapter 3 Knowledge-Based Problem-Solving: How AI and Big Data Are Transforming Health Care 3.1 Introduction 3.2 The Role of AI, Big Data, and IoT in Health Care 3.3 Image-Based Diagnosis 3.4 Big Data Analytics Process Using Machine Learning 3.5 Discussion 3.6 Conclusion References Chapter 4 Distributed Artificial Intelligence for Document Retrieval 4.1 Introduction 4.2 Proposed Research 4.2.1 Improving Precision 4.3 General-Purpose Ranking 4.4 Structure-Weighted Ranking 4.5 The Structure-Weighted/Learned Function 4.6 Improving Recall and Precision 4.6.1 Stemming 4.6.2 Relevance Feedback 4.6.3 Thesaurus 4.7 Preliminary Results 4.8 Scope for Distributed AI in This Process 4.9 Benefits of Decentralized Search Engines 4.10 Discussion 4.11 Conclusion References Chapter 5 Distributed Consensus 5.1 Introduction 5.2 Nakamoto Consensus 5.2.1 Nakamoto Consensus Working 5.2.1.1 Proof of Work 5.2.1.2 Block Selection 5.2.1.3 Scarcity 5.2.1.4 Incentive Structure 5.2.2 Security of Bitcoin 5.2.3 The PoW Algorithm 5.2.4 Proof of Stake 5.2.5 Proof of Burn 5.2.6 Difficulty Level 5.2.7 Sybil Attack 5.2.7.1 Eclipse Attack 5.2.8 Hyperledger Fabric: A Blockchain Development 5.3 Conclusions and Discussions References Chapter 6 DAI for Information Retrieval 6.1 Introduction 6.2 Distributed Problem-Solving 6.3 Multiagents 6.4 A Multiagent Approach for Peer-to-Peer-Based Information Recoupment Systems 6.4.1 A Mediator-Free Framework 6.4.2 Agent-View Algorithm 6.4.3 Distributed Search Algorithms 6.5 Blackboard Model 6.6 DIALECT 2: An Information Recoupment System 6.6.1 The Control in Blackboard Systems 6.6.2 Control in DIALECT 2 6.6.2.1 The Linguistic Parser 6.6.2.2 The Reformation Module 6.7 Analysis and Discussion 6.8 Conclusion References Chapter 7 Decision Procedures 7.1 Motivation 7.2 Introduction 7.3 Distributed Artificial Intelligence 7.4 Applying Artificial Intelligence to Decision-Making 7.5 Automated Decision-Making by AI 7.5.1 Impact of Automated Decision System 7.5.2 Forms of Automated Decision System 7.5.3 Application of Automated Decision System 7.5.4 Cyber Privacy Concerns 7.5.5 Discussion and Future Impact 7.6 Cooperation in Multi-Agent Environments 7.6.1 Notations and Workflow 7.6.2 Action Independence 7.7 Game Theory Scenario 7.8 Data-Driven or AI-Driven 7.8.1 Human Judgment 7.8.2 Data-Driven Decision-Making 7.8.3 Working of Data-Driven Decisions 7.8.4 AI-Driven Decision-Making 7.8.5 Leveraging Human and AI-Driven Workflows Together 7.9 Calculative Rationality 7.10 Meta-Level Rationality and Meta-Reasoning 7.11 The Role of Decision Procedures in Distributed Decision-Making 7.12 Advantages of Distributed Decision-Making 7.13 Optimization Decision Theory 7.13.1 Multi-Level (Hierarchical) Algorithms 7.14 Dynamic Programming 7.15 Network Flow 7.16 Large-Scale Decision-Making (LSDM) 7.16.1 Key Elements in an LSDM Model 7.17 Conclusion Reference Chapter 8 Cooperation through Communication in a Distributed Problem-Solving Network 8.1 Introduction 8.2 Distributed Control System 8.2.1 Design Decisions 8.2.2 Host Node Software Communication 8.2.3 Convolutional Software Node Network 8.2.4 Assessment of Distributed Situation 8.2.5 Computer-Aided Control Engineering (CACE) 8.2.6 Knowledge Base 8.2.7 Training Dataset 8.3 Motivation and Development of the ICE Architecture 8.3.1 History of ICE Model 8.3.1.1 Operators on Information States 8.3.1.2 Relations to Observable Quantum Mechanics 8.3.1.3 The Influence of Sociology and Intentional States 8.3.2 Requirements of a Theory of Animal and Robotics Communication 8.4 A Brief Conceptual History of Formal Semantics 8.4.1 Tarski Semantics 8.4.2 Possible World Semantics 8.4.3 Semantics of Temporal Logic 8.4.4 Limitations of Kripke Possible World Semantics 8.5 Related Work 8.6 Dynamic Possible World Semantics 8.7 Situation Semantics and Pragmatics 8.8 Modeling Distributed AI Systems as a Distributed Goal Search Problem 8.9 Discussion 8.10 Conclusion References Chapter 9 Instantiating Descriptions of Organizational Structures 9.1 Introduction 9.1.1 Example of Organizational Structure 9.1.2 Purpose 9.1.3 Components 9.1.3.1 Obligations 9.1.3.2 Assets 9.1.3.3 Information 9.1.3.4 Apparatuses 9.1.3.5 Experts and Subcontractors 9.1.4 Relation between Components 9.1.4.1 Correspondence 9.1.4.2 Authority 9.1.4.3 Area, Proximity, and so on 9.1.5 Description of the Organizational Structures with EFIGE 9.1.6 The Constraint Solution Algorithm 9.1.6.1 Requirement Propagation 9.1.6.2 Imperative Utility 9.2 Comparative Study of Organization Structure 9.3 Conclusion References Chapter 10 Agora Architecture 10.1 Introduction 10.1.1 Characteristics of System for which Agora Is Useful 10.2 Architecture of Agora 10.3 Agora’s Virtual Machine 10.3.1 Element Cliques (EC) 10.3.2 Knowledge Source (KS) 10.3.3 Mapping of KS into Mach layer 10.3.4 Frameworks 10.3.4.1 Typical Framework Tools 10.3.4.2 Knowledge Base: CFrame 10.4 Examples of Systems Built Using Agora 10.4.1 Intelligent Transport System (ITS) 10.4.1.1 Architecture of Agora ITS Framework 10.4.1.2 Agora ITS Applications 10.4.2 CMU Speech Recognition System 10.5 Application of Agora as a Minimal Distributed Protocol for E-Commerce 10.5.1 Basic Protocol 10.5.2 Accounts 10.5.3 Transactions 10.5.4 Properties of Agora Protocol 10.5.4.1 Minimal 10.5.4.2 Distribution 10.5.4.3 Authentication 10.5.4.4 Security 10.5.5 Enhanced Protocol to Regulate Fraud 10.5.5.1 New Message 10.5.5.2 Batch Processing 10.5.5.3 Selection of Parameter 10.5.5.4 Online Arbitration References Chapter 11 Test Beds for Distributed AI Research 11.1 Introduction 11.2 Background 11.3 Tools and Methodology 11.3.1 MACE 11.3.1.1 MACE System 11.3.2 Actor Model 11.3.3 MICE Testbed 11.3.4 ARCHON 11.3.4.1 Multiagent Environment 11.3.4.2 The ARCHON Architecture 11.3.5 Distributed Vehicle Monitoring Testbed (DVMST) 11.3.6 AGenDA Testbed 11.3.6.1 Architectural Level 11.3.6.2 System Development Level 11.3.6.3 Other Testbeds for DAI 11.4 Conclusion References Chapter 12 Real-Time Framework Competitive Distributed Dilemma 12.1 Introduction 12.2 Real-Time Route Guidance Distributed System Framework 12.3 Experts Cooperating 12.4 A Distributed Problem-Solving Perspective 12.5 Caveats for Cooperation 12.6 Task Sharing 12.7 Result-Sharing 12.8 Task-Sharing and Result-Sharing: A Comparative Analysis 12.9 Conclusion References Chapter 13 Comparative Studied Based on Attack Resilient and Efficient Protocol with Intrusion Detection System Based on Deep Neural Network for Vehicular System Security 13.1 Introduction 13.2 Related Work 13.3 Background 13.3.1 Processing Phase 13.3.2 Training Phase 13.4 Intrusion Detection System 13.5 IDS with Machine Learning 13.6 Proposed Technique 13.6.1 Proposed Deep Neural Network Intrusion Detection System 13.6.2 Training the Deep Neural Network Structure 13.6.2.1 ANN Parameters 13.6.2.2 Input Layer’s Neurons 13.6.2.3 Hidden Layer’s Neurons 13.6.2.4 Output Layer’s Neurons 13.6.2.5 Transfer Function 13.7 Simulation Parameters 13.7.1 Average End-to-End Delay 13.7.2 Average Energy Consumption 13.7.3 Average Network Throughput 13.7.4 Packet Delivery Ratio (PDR) 13.8 Conclusion References Chapter 14 A Secure Electronic Voting System Using Decentralized Computing 14.1 Introduction 14.2 Background and Motivation 14.2.1 Secret Ballot 14.2.2 One Man, One Vote 14.2.3 Voter Eligibility 14.2.4 Transparency 14.2.5 Votes Accurately Recorded and Counted 14.2.6 Reliability 14.3 Literature Survey 14.4 Main Contributions 14.4.1 Variables of the Contract 14.4.2 Preparing the Ballot 14.4.3 Vote Counting 14.5 E-Voting and Blockchain 14.5.1 Cryptography 14.6 Use of Blockchain in Voting System 14.7 Result and Analysis 14.8 Conclusion References Chapter 15 DAI for Document Retrieval 15.1 Introduction 15.2 Artificial Intelligence 15.2.1 Some Real-Life Examples of AI 15.2.2 Advantages of AI 15.2.3 Information Retrieval 15.2.4 Information Retrieval Assessment 15.3 Distributed Artificial Intelligence 15.3.1 Introduction to Distributed Artificial Intelligence 15.3.2 Distributed Artificial Intelligence Tools 15.3.3 Complete Document and Document Interchange Format 15.3.4 Data Network Architecture for Distributed Information Retrieval 15.3.5 Types of DAI 15.3.6 Challenges in Distributed AI 15.3.7 The Objectives of Distributed Artificial Intelligence 15.3.8 Areas in Which DAI Is Implemented 15.3.9 Software Agents 15.4 Conclusion References Chapter 16 A Distributed Artificial Intelligence: The Future of AI 16.1 Introduction 16.2 Background and Challenges of AI 16.2.1 Hardware for AI 16.2.2 Platform and Programming Languages for AI 16.2.3 Challenges of AI 16.3 Components and Proposed Environment of Distributed AI 16.3.1 Graphical Processing Unit (GPU) 16.3.2 Storage 16.3.3 High-Speed Reliable Network 16.3.4 Proposed Distributed Environment of DAI 16.4 Application of Distributed AI 16.4.1 Healthcare Systems 16.4.2 Agriculture Systems 16.4.3 E-Commerce 16.5 Future Scope 16.6 Conclusion References Chapter 17 Analysis of Hybrid Deep Neural Networks with Mobile Agents for Traffic Management in Vehicular Adhoc Networks 17.1 Introduction 17.2 Network Model 17.3 Traffic Management Model 17.3.1 Mobile Agent Unit 17.3.2 Infrastructure Unit 17.4 Performance Evaluation 17.5 Conclusion References Chapter 18 Data Science and Distributed AI 18.1 Introduction 18.2 Inspiration 18.3 Distributed Sensor Networks 18.4 Associations Tested 18.4.1 Human-Based Network Experiments 18.4.2 Examinations with Machine Networks 18.5 An Abstract Model for Problem-Solving 18.5.1 The HSII Organization: A Production System Approach 18.5.2 Hearsay-II Multiprocessing Mechanisms 18.5.3 Nearby Context 18.4.4 Data Integrity 18.5.5 Contextual Analysis 18.5.6 HSII Multiprocessor Performance Analysis through Simulation 18.5.7 The HSII Speech Understanding System: The Simulation Configuration 18.6 Hierarchical Distribution of Work 18.7 Agora 18.8 Exploratory Outcomes for Image Processing 18.9 Summary and Conclusions References Index