دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 4
نویسندگان: Andy Field
سری:
ISBN (شابک) : 9781446249185
ناشر: SAGE Publications Ltd
سال نشر: 2013
تعداد صفحات: 2617
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 39 مگابایت
در صورت تبدیل فایل کتاب Discovering statistics using IBM SPSS statistics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کشف آمار با استفاده از آمار IBM SPSS نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
بیرقیب از این جهت که آموزش آمار را حتی برای مضطربترین دانشآموزان قانعکننده و قابل دسترس میسازد، تنها کتاب آماری که شما و دانشآموزانتان به آن نیاز دارید، تازه بهتر شده است! کتاب کشف آمار جامع و پرفروش اندی فیلد با استفاده از نسخه چهارم SPSS، دانش آموزان را از مفاهیم مقدماتی آماری از طریق مفاهیم بسیار پیشرفته می برد و SPSS را در سراسر آن گنجانده است. نسخه چهارم بر ارائه بهروزرسانیهای محتوای ضروری، دسترسی بهتر به ویژگیهای کلیدی، منابع بیشتر مدرس و محتوای بیشتر برای رشتههای خاص تمرکز دارد. همچنین پیشرفتهای دیجیتالی جدید قدرتمند را در وبسایت همراه کتاب درسی (برای اطلاعات بیشتر از sagepub.com دیدن کنید) ترکیب میکند. WebAssign® The Fourth Edition در WebAssign در دسترس خواهد بود و به مربیان این امکان را می دهد تا با استفاده از یک کتاب نمره که به آنها امکان می دهد پیشرفت دانش آموزان را ردیابی و نظارت کنند، تکالیف را به صورت آنلاین با دانش آموزان خود تولید و مدیریت کنند. دانش آموزان با استفاده از ترکیبی از حدود 2000 سوال چند گزینه ای و الگوریتمی تمرین نامحدودی دریافت می کنند. WebAssign بازخوردهای فوری و پیوندهایی را مستقیماً به بخش کتاب الکترونیکی همراه که در آن مفهوم پوشش داده شده بود به دانشآموزان ارائه میدهد و به دانشآموزان امکان میدهد راهحل صحیح را بیابند. SAGE MobileStudy SAGE MobileStudy به دانشآموزان مجهز به تلفنهای هوشمند و تبلتها اجازه میدهد تا در هر جایی که خدمات تلفن همراه دریافت میکنند، به مطالب انتخابی مانند Cramming Sam's Study Tips دسترسی داشته باشند. با استفاده از کدهای QR که در سراسر متن گنجانده شده است، برای دانشآموزان آسان است که مستقیماً به بخشی که برای مطالعه نیاز دارند برسند و به آنها امکان میدهد تقریباً از هر کجا به مطالعه خود ادامه دهند، حتی زمانی که از نسخه چاپی متن خود دور هستند. برای پیش نمایش سایت MobileStudy از وب سایت ناشر دیدن کنید. مطالب پشتیبانی مربی علوم ورزشی و آموزشی با موارد پیشرفته برای روانشناسی، تجارت و مدیریت و علوم بهداشتی، این کتاب را با طیف وسیع تری از موضوعات در سراسر علوم اجتماعی و جایی که آمار به مخاطبان بین رشته ای آموزش داده می شود، مرتبط تر می کند. بهروزرسانیهای اصلی نسخه چهارم کاملاً با نسخههای اخیر SPSS تا و شامل نسخه 20.0 سازگار است. دانشآموزان اصطلاحات کمی گیجکننده را توضیح میدهند. مواد حمایتی خاص رشتهای جدید برای آموزش، علوم ورزشی، روانشناسی، تجارت و مدیریت، و علوم بهداشتی اضافه شدهاند و این کتاب را با طیف وسیعتری از موضوعات در علوم اجتماعی، رفتاری و بهداشتی مرتبطتر میکند. به مخاطبان بین رشته ای آموزش داده می شود. یک وبسایت همراه پیشرفته (برای اطلاعات بیشتر به وبسایت ناشر مراجعه کنید) مطالب فراوانی را ارائه میدهد که میتوان از آنها در ارتباط با کتاب درسی استفاده کرد، از جمله: پاورپوینتها بانکهای تست پاسخ به وظایف Smart Alex در پایان هر فصل فایلهای داده برای تست مشکلات در SPSS فلش کارت مفاهیم کلیدی سوالات چند گزینه ای خودارزیابی ویدئوهای آنلاین رویه های آماری کلیدی و SPSS
Unrivalled in the way it makes the teaching of statistics compelling and accessible to even the most anxious of students, the only statistics textbook you and your students will ever need just got better! Andy Field's comprehensive and bestselling Discovering Statistics Using SPSS 4th Edition takes students from introductory statistical concepts through very advanced concepts, incorporating SPSS throughout. The Fourth Edition focuses on providing essential content updates, better accessibility to key features, more instructor resources, and more content specific to select disciplines. It also incorporates powerful new digital developments on the textbook's companion website (visit sagepub.com for more information). WebAssign® The Fourth Edition will be available on WebAssign, allowing instructors to produce and manage assignments with their studnets online using a grade book that allows them to track and monitor students' progress. Students receive unlimited practice using a combination of approximately 2000 multiple choice and algorithmic questions. WebAssign provided students with instant feedback and links directly to the accompanying eBook section where the concept was covered, allowing students to find the correct solution. SAGE MobileStudy SAGE MobileStudy allows students equipped with smartphones and tablets to access select material, such as Cramming Sam's Study Tips, anywhere they receive mobile service. With QR codes included throughout the text, it's easy for students to get right to the section they need to study, allowing them to continue their study from virtually anywhere, even when they are away from thier printed copy of the text. Visit the publisher's website to preview the MobileStudy site. Education and Sport Sciences instructor support materials with enhanced ones for Psychology, Business and Management and the Health sciences make the book even more relevant to a wider range of subjects across the social sciences and where statistics is taught to a cross-disciplinary audience. Major Updates to the 4th Edition Fully compatible with recent SPSS releases up to and including version 20.0 Exciting new characters, including statistical cult leader Oditi, who provides students access to interesting and helpful video clips to illustrate statistical and SPSS concepts, and Confusious, who helps students clarify confusing quantitative terminology New discipline specific support matierlas have been added for Education, Sports Sciences, Psychology, Business & Management, and Health Sciences, making the book even more relevant to a wider range of subjects across the Social, Behavioral, and Health Sciences is taught to an interdisciplinary audience. An enhanced Companion Website (visit the publisher's website for more information) offers a wealth of material that can be used in conjunction with the textbook, including: PowerPoints Testbanks Answers to the Smart Alex tasks at the end of each chapter Datafiles for testing problems in SPSS Flashcards of key concepts Self-assessment multiple-choice questions Online videos of key statistical and SPSS procedures
Title Copyright Contents Preface How to use this book Acknowledgements Dedication Symbols used in this book Some maths revision 1 Why is my evil lecturer forcing me to learn statistics? 1.1. What will this chapter tell me? 1.2. What the hell am I doing here? I don’t belong here 1.2.1. The research process 1.3. Initial observation: finding something that needs explaining 1.4. Generating theories and testing them 1.5. Collect data to test your theory 1.5.1. Variables 1.5.2. Measurement error 1.5.3. Validity and reliability 1.5.4. Correlational research methods 1.5.5. Experimental research methods 1.5.6. Randomization 1.6. Analysing data 1.6.1. Frequency distributions 1.6.2. The centre of a distribution 1.6.3. The dispersion in a distribution 1.6.4. Using a frequency distribution to go beyond the data 1.6.5. Fitting statistical models to the data 1.7. Reporting data 1.7.1. Dissemination of research 1.7.2. Knowing how to report data 1.7.3. Some initial guiding principles 1.8. Brian’s attempt to woo Jane 1.9. What next? 1.10. Key terms that I’ve discovered 1.11. Smart Alex’s tasks 1.12. Further reading 2 Everything you never wanted to know about statistics 2.1. What will this chapter tell me? 2.2. Building statistical models 2.3. Populations and samples 2.4. Statistical models 2.4.1. The mean as a statistical model 2.4.2. Assessing the fit of a model: sums of squares and variance revisited 2.4.3. Estimating parameters 2.5. Going beyond the data 2.5.1. The standard error 2.5.2. Confidence intervals 2.6. Using statistical models to test research questions 2.6.1. Null hypothesis significance testing 2.6.2. Problems with NHST 2.7. Modern approaches to theory testing 2.7.1. Effect sizes 2.7.2. Meta-analysis 2.8. Reporting statistical models 2.9. Brian’s attempt to woo Jane 2.10. What next? 2.11. Key terms that I’ve discovered 2.12. Smart Alex’s tasks 2.13. Further reading 3 The IBM SPSS Statistics environment 3.1. What will this chapter tell me? 3.2. Versions of IBM SPSS Statistics 3.3. Windows versus MacOS 3.4. Getting started 3.5. The data editor 3.5.1. Entering data into the data editor 3.5.2. The variable view 3.5.3. Missing values 3.6. Importing data 3.7. The SPSS viewer 3.8. Exporting SPSS output 3.9. The syntax editor 3.10. Saving files 3.11. Retrieving a file 3.12. Brian’s attempt to woo Jane 3.13. What next? 3.14. Key terms that I’ve discovered 3.15. Smart Alex’s tasks 3.16. Further reading 4 Exploring data with graphs 4.1. What will this chapter tell me? 4.2. The art of presenting data 4.2.1. What makes a good graph? 4.2.2. Lies, damned lies, and … erm … graphs 4.3. The SPSS chart builder 4.4. Histograms 4.5. Boxplots (box–whisker diagrams) 4.6. Graphing means: bar charts and error bars 4.6.1. Simple bar charts for independent means 4.6.2. Clustered bar charts for independent means 4.6.3. Simple bar charts for related means 4.6.4. Clustered bar charts for related means 4.6.5. Clustered bar charts for ‘mixed’ designs 4.7. Line charts 4.8. Graphing relationships: the scatterplot 4.8.1. Simple scatterplot 4.8.2. Grouped scatterplot 4.8.3. Simple and grouped 3-D scatterplots 4.8.4. Matrix scatterplot 4.8.5. Simple dot plot or density plot 4.8.6. Drop-line graph 4.9. Editing graphs 4.10. Brian’s attempt to woo Jane 4.11. What next? 4.12. Key terms that I’ve discovered 4.13. Smart Alex’s tasks 4.14. Further reading 5 The beast of bias 5.1. What will this chapter tell me? 5.2. What is bias? 5.2.1. Assumptions 5.2.2. Outliers 5.2.3. Additivity and linearity 5.2.4. Normally distributed something or other 5.2.5. Homoscedasticity/homogeneity of variance 5.2.6. Independence 5.3 Spotting bias 5.3.1. Spotting outliers 5.3.2. Spotting normality 5.3.3. Spotting linearity and heteroscedasticity/heterogeneity of variance 5.4. Reducing bias 5.4.1. Trimming the data 5.4.2. Winsorizing 5.4.3. Robust methods 5.4.4. Transforming data 5.5. Brian’s attempt to woo Jane 5.6. What next? 5.7. Key terms that I’ve discovered 5.8. Smart Alex’s tasks 5.9. Further reading 6 Non-parametric models 6.1. What will this chapter tell me? 6.2. When to use non-parametric tests 6.3. General procedure of non-parametric tests in SPSS 6.4. Comparing two independent conditions: the Wilcoxon rank-sum test and Mann–Whitney test 6.4.1. Theory 6.4.2. Inputting data and provisional analysis 6.4.3. The Mann–Whitney test using SPSS 6.4.4. Output from the Mann–Whitney test 6.4.5. Calculating an effect size 6.4.6. Writing the results 6.5. Comparing two related conditions: the Wilcoxon signed-rank test 6.5.1. Theory of the Wilcoxon signed-rank test 6.5.2. Running the analysis 6.5.3. Output for the ecstasy group 6.5.4. Output for the alcohol group 6.5.5. Calculating an effect size 6.5.6. Writing the results 6.6. Differences between several independent groups: the Kruskal–Wallis test 6.6.1. Theory of the Kruskal–Wallis test 6.6.2. Follow-up analysis 6.6.3. Inputting data and provisional analysis 6.6.4. Doing the Kruskal–Wallis test in SPSS 6.6.5. Output from the Kruskal–Wallis test 6.6.6. Testing for trends: the Jonckheere–Terpstra test 6.6.7. Calculating an effect size 6.6.8. Writing and interpreting the results 6.7. Differences between several related groups: Friedman’s ANOVA 6.7.1. Theory of Friedman’s ANOVA 6.7.2. Inputting data and provisional analysis 6.7.3. Doing Friedman’s ANOVA in SPSS 6.7.4. Output from Friedman’s ANOVA 6.7.5. Following-up Friedman’s ANOVA 6.7.6. Calculating an effect size 6.7.7. Writing and interpreting the results 6.8. Brian’s attempt to woo Jane 6.9. What next? 6.10. Key terms that I’ve discovered 6.11. Smart Alex’s tasks 6.12. Further reading 7 Correlation 7.1. What will this chapter tell me? 7.2. Modelling relationships 7.2.1. A detour into the murky world of covariance 7.2.2. Standardization and the correlation coefficient 7.2.3. The significance of the correlation coefficient 7.2.4. Confidence intervals for r 7.2.5. A word of warning about interpretation: causality 7.3. Data entry for correlation analysis using SPSS 7.4. Bivariate correlation 7.4.1. General procedure for running correlations in SPSS 7.4.2. Pearson’s correlation coefficient 7.4.3. Spearman’s correlation coefficient 7.4.4. Kendall’s tau (non-parametric) 7.4.5. Biserial and point-biserial correlations 7.5. Partial correlation 7.5.1. The theory behind part and partial correlation 7.5.2. Partial correlation in SPSS 7.5.3. Semi-partial (or part) correlations 7.6. Comparing correlations 7.6.1. Comparing independent rs 7.6.2. Comparing dependent rs 7.7. Calculating the effect size 7.8. How to report correlation coefficients 7.9. Brian’s attempt to woo Jane 7.10. What next? 7.11. Key terms that I’ve discovered 7.12. Smart Alex’s tasks 7.13. Further reading 8 Regression 8.1. What will this chapter tell me? 8.2. An introduction to regression 8.2.1. The simple linear model 8.2.2. The linear model with several predictors 8.2.3. Estimating the model 8.2.4. Assessing the goodness of fit, sums of squares, R and R2 8.2.5. Assessing individual predictors 8.3. Bias in regression models? 8.3.1. Is the model biased by unusual cases? 8.3.2. Generalizing the model 8.3.3. Sample size in regression 8.4. Regression using SPSS: One Predictor 8.4.1. Regression: the general procedure 8.4.2. Running a simple regression using SPSS 8.4.3. Interpreting a simple regression 8.4.4. Using the model 8.5. Multiple regression 8.5.1. Methods of regression 8.5.2. Comparing models 8.5.3. Multicollinearity 8.6. Regression with several predictors using SPSS 8.6.1. Main options 8.6.2. Statistics 8.6.3. Regression plots 8.6.4. Saving regression diagnostics 8.6.5. Further options 8.6.6. Robust regression 8.7. Interpreting multiple regression 8.7.1. Descriptives 8.7.2. Summary of model 8.7.3. Model parameters 8.7.4. Excluded variables 8.7.5. Assessing multicollinearity 8.7.6. Bias in the model: casewise diagnostics 8.7.7. Bias in the model: assumptions 8.8. What if I violate an assumption? Robust regression 8.9. How to report multiple regression 8.10. Brian’s attempt to woo Jane 8.11. What next? 8.12. Key terms that I’ve discovered 8.13. Smart Alex’s tasks 8.14. Further reading 9 Comparing two means 9.1. What will this chapter tell me? 9.2. Looking at differences 9.2.1. An example: are invisible people mischievous? 9.2.2. Categorical predictors in the linear model 9.3. The t-test 9.3.1. Rationale for the t-test 9.3.2. The independent t-test equation explained 9.3.3. The paired-samples t-test equation explained 9.4. Assumptions of the t-test 9.5. The independent t-test using SPSS 9.5.1. The general procedure 9.5.2. Exploring data and testing assumptions 9.5.3. Compute the independent t-test 9.5.4. Output from the independent t-test 9.5.5. Calculating the effect size 9.5.6. Reporting the independent t-test 9.6. Paired-samples t-test using SPSS 9.6.1. Entering data 9.6.2. Exploring data and testing assumptions 9.6.3. Computing the paired-samples t-test 9.6.4. Calculating the effect size 9.6.5. Reporting the paired-samples t-test 9.7. Between groups or repeated measures? 9.8. What if I violate the test assumptions? 9.9. Brian’s attempt to woo Jane 9.10. What next? 9.11. Key terms that I’ve discovered 9.12. Smart Alex’s tasks 9.13. Further reading 10 Moderation, mediation and more regression 10.1. What will this chapter tell me? 10.2. Installing custom dialog boxes in SPSS 10.3. Moderation: interactions in regression 10.3.1. The conceptual model 10.3.2. The statistical model 10.3.3. Centring variables 10.3.4. Creating interaction variables 10.3.5. Following up an interaction effect 10.3.6. Running the analysis 10.3.7. Output from moderation analysis 10.3.8. Reporting moderation analysis 10.4. Mediation 10.4.1. The conceptual model 10.4.2. The statistical model 10.4.3. Effect sizes of mediation 10.4.4. Running the analysis 10.4.5. Output from mediation analysis 10.4.6. Reporting mediation analysis 10.5. Categorical predictors in regression 10.5.1. Dummy coding 10.5.2. SPSS output for dummy variables 10.6. Brian’s attempt to woo Jane 10.7. What next? 10.8. Key terms that I’ve discovered 10.9. Smart Alex’s tasks 10.10. Further reading 11 Comparing several means: ANOVA (GLM 1) 11.1. What will this chapter tell me? 11.2. The theory behind ANOVA 11.2.1. Using a linear model to compare means 11.2.2. Logic of the F-ratio 11.2.3. Total sum of squares (SST) 11.2.4. Model sum of squares (SSM) 11.2.5. Residual sum of squares (SSR) 11.2.6. Mean squares 11.2.7. The F-ratio 11.2.8. Interpreting F 11.3. Assumptions of ANOVA 11.3.1. Homogeneity of variance 11.3.2. Is ANOVA robust? 11.3.3. What to do when assumptions are violated 11.4. Planned contrasts 11.4.1. Choosing which contrasts to do 11.4.2. Defining contrasts using weights 11.4.3. Non-orthogonal comparisons 11.4.4. Standard contrasts 11.4.5. Polynomial contrasts: trend analysis 11.5. Post hoc procedures 11.5.1. Type I and Type II error rates for post hoc tests 11.5.2. Are post hoc procedures robust? 11.5.3. Summary of post hoc procedures 11.6. Running one-way ANOVA in SPSS 11.6.1. General procedure of one-way ANOVA 11.6.2. Planned comparisons using SPSS 11.6.3. Post hoc tests in SPSS 11.6.4. Options 11.6.5. Bootstrapping 11.7. Output from one-way ANOVA 11.7.1. Output for the main analysis 11.7.2. Output for planned comparisons 11.7.3. Output for post hoc tests 11.8. Calculating the effect size 11.9. Reporting results from one-way independent ANOVA 11.10. Key terms that I’ve discovered 11.11. Brian’s attempt to woo Jane 11.12. What next? 11.13. Smart Alex’s tasks 11.14. Further reading 12 Analysis of covariance, ANCOVA (GLM 2) 12.1. What will this chapter tell me? 12.2. What is ANCOVA? 12.3. Assumptions and issues in ANCOVA 12.3.1. Independence of the covariate and treatment effect 12.3.2. Homogeneity of regression slopes 12.3.3. What to do when assumptions are violated 12.4. Conducting ANCOVA in SPSS 12.4.1. General procedure 12.4.2. Inputting data 12.4.3. Testing the independence of the treatment variable and covariate 12.4.4. The main analysis 12.4.5. Contrasts 12.4.6. Other options 12.4.7. Bootstrapping and plots 12.5. Interpreting the output from ANCOVA 12.5.1. What happens when the covariate is excluded? 12.5.2. The main analysis 12.5.3. Contrasts 12.5.4. Interpreting the covariate 12.6. Testing the assumption of homogeneity of regression slopes 12.7. Calculating the effect size 12.8. Reporting results 12.9. Brian’s attempt to woo Jane 12.10. What next? 12.11. Key terms that I’ve discovered 12.12. Smart Alex’s tasks 12.13. Further reading 13 Factorial ANOVA (GLM 3) 13.1. What will this chapter tell me? 13.2. Theory of factorial ANOVA (independent designs) 13.2.1. Factorial designs 13.2.2. Guess what? Factorial ANOVA is a linear model 13.2.3. Two-way ANOVA: behind the scenes 13.2.4. Total sums of squares (SST) 13.2.5. Model sum of squares, SSM 13.2.6. The residual sum of squares, SSR 13.2.7. The F-ratios 13.3. Assumptions of factorial ANOVA 13.4. Factorial ANOVA using SPSS 13.4.1. General procedure for factorial ANOVA 13.4.2. Entering the data and accessing the main dialog box 13.4.3. Graphing interactions 13.4.4. Contrasts 13.4.5. Post hoc tests 13.4.6. Bootstrapping and other options 13.5. Output from factorial ANOVA 13.5.1. Levene’s test 13.5.2. The main ANOVA table 13.5.3. Contrasts 13.5.4. Simple effects analysis 13.5.5. Post hoc analysis 13.6. Interpreting interaction graphs 13.7. Calculating effect sizes 13.8. Reporting the results of two-way ANOVA 13.9. Brian’s attempt to woo Jane 13.10. What next? 13.11. Key terms that I’ve discovered 13.12. Smart Alex’s tasks 13.13. Further reading 14 Repeated-measures designs (GLM 4) 14.1. What will this chapter tell me? 14.2. Introduction to repeated-measures designs 14.2.1. The assumption of sphericity 14.2.2. How is sphericity measured? 14.2.3. Assessing the severity of departures from sphericity 14.2.4. What is the effect of violating the assumption of sphericity? 14.2.5. What do you do if you violate sphericity? 14.3. Theory of one-way repeated-measures ANOVA 14.3.1. The total sum of squares, SST 14.3.2. The within-participant sum of squares, SSW 14.3.3. The model sum of squares, SSM 14.3.4. The residual sum of squares, SSR 14.3.5. The mean squares 14.3.6. The F-ratio 14.3.7. The between-participants sum of squares 14.4. Assumptions in repeated-measures ANOVA 14.5. One-way repeated-measures ANOVA using SPSS 14.5.1. Repeated-measures ANOVA: the general procedure 14.5.2. The main analysis 14.5.3. Defining contrasts for repeated measures 14.5.4. Post hoc tests and additional options 14.6. Output for one-way repeated-measures ANOVA 14.6.1. Descriptives and other diagnostics 14.6.2. Assessing and correcting for sphericity: Mauchly’s test 14.6.3. The main ANOVA 14.6.4. Contrasts 14.6.5. Post hoc tests 14.7. Effect sizes for repeated-measures ANOVA 14.8. Reporting one-way repeated-measures ANOVA 14.9. Factorial repeated-measures designs 14.9.1. The main analysis 14.9.2. Contrasts 14.9.3. Simple effects analysis 14.9.4. Graphing interactions 14.9.5. Other options 14.10. Output for factorial repeated-measures ANOVA 14.10.1. Descriptives and main analysis 14.10.2. Contrasts for repeated-measures variables 14.11. Effect sizes for factorial repeated-measures ANOVA 14.12. Reporting the results from factorial repeated-measures ANOVA 14.13. Brian’s attempt to woo Jane 14.14. What next? 14.15. Key terms that I’ve discovered 14.16. Smart Alex’s tasks 14.17. Further reading 15 Mixed design ANOVA (GLM 5) 15.1 What will this chapter tell me? 15.2. Mixed designs 15.3. Assumptions in mixed designs 15.4. What do men and women look for in a partner? 15.5. Mixed ANOVA in SPSS 15.5.1. Mixed ANOVA: the general procedure 15.5.2. Entering data 15.5.3. The main analysis 15.5.4. Other options 15.6. Output for mixed factorial ANOVA 15.6.1. The main effect of gender 15.6.2. The main effect of looks 15.6.3. The main effect of charisma 15.6.4. The interaction between gender and looks 15.6.5. The interaction between gender and charisma 15.6.6. The interaction between attractiveness and charisma 15.6.7. The interaction between looks, charisma and gender 15.6.8. Conclusions 15.7. Calculating effect sizes 15.8. Reporting the results of mixed ANOVA 15.9. Brian’s attempt to woo Jane 15.10. What next? 15.11. Key terms that I’ve discovered 15.12. Smart Alex’s tasks 15.13. Further reading 16 Multivariate analysis of variance (MANOVA) 16.1. What will this chapter tell me? 16.2. When to use MANOVA 16.3. Introduction 16.3.1. Similarities to and differences from ANOVA 16.3.2. Choosing outcomes 16.3.3. The example for this chapter 16.4. Theory of MANOVA 16.4.1. Introduction to matrices 16.4.2. Some important matrices and their functions 16.4.3. Calculating MANOVA by hand: a worked example 16.4.4. Principle of the MANOVA test statistic 16.5. Practical issues when conducting MANOVA 16.5.1. Assumptions and how to check them 16.5.2. What to do when assumptions are violated 16.5.3. Choosing a test statistic 16.5.4. Follow-up analysis 16.6. MANOVA using SPSS 16.6.1. General procedure of one-way ANOVA 16.6.2. The main analysis 16.6.3. Multiple comparisons in MANOVA 16.6.4. Additional options 16.7. Output from MANOVA 16.7.1. Preliminary analysis and testing assumptions 16.7.2. MANOVA test statistics 16.7.3. Univariate test statistics 16.7.4. SSCP matrices 16.7.5. Contrasts 16.8. Reporting results from MANOVA 16.9. Following up MANOVA with discriminant analysis 16.10. Output from the discriminant analysis 16.11. Reporting results from discriminant analysis 16.12. The final interpretation 16.13. Brian’s attempt to woo Jane 16.14. What next? 16.15. Key terms that I’ve discovered 16.16. Smart Alex’s tasks 16.17. Further reading 17 Exploratory factor analysis 17.1. What will this chapter tell me? 17.2. When to use factor analysis 17.3. Factors and components 17.3.1. Graphical representation 17.3.2. Mathematical representation 17.3.3. Factor scores 17.4. Discovering factors 17.4.1. Choosing a method 17.4.2. Communality 17.4.3. Factor analysis or PCA? 17.4.4. Theory behind PCA 17.4.5. Factor extraction: eigenvalues and the scree plot 17.4.6. Improving interpretation: factor rotation 17.5. Research example 17.5.1. General procedure 17.5.2. Before you begin 17.6. Running the analysis 17.6.1. Factor extraction in SPSS 17.6.2. Rotation 17.6.3. Scores 17.6.4. Options 17.7. Interpreting output from SPSS 17.7.1. Preliminary analysis 17.7.2. Factor extraction 17.7.3. Factor rotation 17.7.4. Factor scores 17.7.5. Summary 17.8. How to report factor analysis 17.9. Reliability analysis 17.9.1. Measures of reliability 17.9.2. Interpreting Cronbach’s a (some cautionary tales) 17.9.3. Reliability analysis in SPSS 17.9.4. Reliability analysis output 17.10. How to report reliability analysis 17.11. Brian’s attempt to woo Jane 17.12. What next? 17.13. Key terms that I’ve discovered 17.14. Smart Alex’s tasks 17.15. Further reading 18 Categorical data 18.1. What will this chapter tell me? 18.2. Analysing categorical data 18.3. Theory of analysing categorical data 18.3.1. Pearson’s chi-square test 18.3.2. Fisher’s exact test 18.3.3. The likelihood ratio 18.3.4. Yates’s correction 18.3.5. Other measures of association 18.3.6. Several categorical variables: loglinear analysis 18.4. Assumptions when analysing categorical data 18.4.1. Independence 18.4.2. Expected frequencies 18.4.3. More doom and gloom 18.5. Doing chi-square in SPSS 18.5.1. General procedure for analysing categorical outcomes 18.5.2. Entering data 18.5.3. Running the analysis 18.5.4. Output for the chi-square test 18.5.5. Breaking down a significant chi-square test with standardized residuals 18.5.6. Calculating an effect size 18.5.7. Reporting the results of chi-square 18.6. Loglinear analysis using SPSS 18.6.1. Initial considerations 18.6.2. Running loglinear analysis 18.6.3. Output from loglinear analysis 18.6.4. Following up loglinear analysis 18.7. Effect sizes in loglinear analysis 18.8. Reporting the results of loglinear analysis 18.9. Brian’s attempt to woo Jane 18.10. What next? 18.11. Key terms that I’ve discovered 18.12. Smart Alex’s tasks 18.13. Further reading 19 Logistic regression 19.1. What will this chapter tell me? 19.2. Background to logistic regression 19.3. What are the principles behind logistic regression? 19.3.1. Assessing the model: the log-likelihood statistic 19.3.2. Assessing the model: the deviance statistic 19.3.3. Assessing the model: R and R2 19.3.4. Assessing the contribution of predictors: the Wald statistic 19.3.5. The odds ratio: exp(B) 19.3.6. Model building and parsimony 19.4. Sources of bias and common problems 19.4.1. Assumptions 19.4.2. Incomplete information from the predictors 19.4.3. Complete separation 19.4.4. Overdispersion 19.5. Binary logistic regression: an example that will make you feel eel 19.5.1. Building a model 19.5.2. Logistic regression: the general procedure 19.5.3. Data entry 19.5.4. Building the models in SPSS 19.5.5. Method of regression 19.5.6. Categorical predictors 19.5.7. Comparing the models 19.5.8. Rerunning the model 19.5.9. Obtaining residuals 19.5.10. Further options 19.5.11. Bootstrapping 19.6. Interpreting logistic regression 19.6.1. Block 0 19.6.2. Model summary 19.6.3. Listing predicted probabilities 19.6.4. Interpreting residuals 19.6.5. Calculating the effect size 19.7. How to report logistic regression 19.8. Testing assumptions: another example 19.8.1. Testing for linearity of the logit 19.8.2. Testing for multicollinearity 19.9. Predicting several categories: multinomial logistic regression 19.9.1. Running multinomial logistic regression in SPSS 19.9.2. Statistics 19.9.3. Other options 19.9.4. Interpreting the multinomial logistic regression output 19.9.5. Reporting the results 19.10. Brian’s attempt to woo Jane 19.11. What next? 19.12. Key terms that I’ve discovered 19.13. Smart Alex’s tasks 19.14. Further reading 20 Multilevel linear models 20.1. What will this chapter tell me? 20.2. Hierarchical data 20.2.1. The intraclass correlation 20.2.2. Benefits of multilevel models 20.3 Theory of multilevel linear models 20.3.1. An example 20.3.2. Fixed and random coefficients 20.4 The multilevel model 20.4.1. Assessing the fit and comparing multilevel models 20.4.2. Types of covariance structures 20.5 Some practical issues 20.5.1. Assumptions 20.5.2. Robust multilevel models 20.5.3. Sample size and power 20.5.4. Centring predictors 20.6 Multilevel modelling using SPSS 20.6.1. Entering the data 20.6.2. Ignoring the data structure: ANOVA 20.6.3. Ignoring the data structure: ANCOVA 20.6.4. Factoring in the data structure: random intercepts 20.6.5. Factoring in the data structure: random intercepts and slopes 20.6.6. Adding an interaction to the model 20.7. Growth models 20.7.1. Growth curves (polynomials) 20.7.2. An example: the honeymoon period 20.7.3. Restructuring the data 20.7.4. Running a growth model on SPSS 20.7.5. Further analysis 20.8. How to report a multilevel model 20.9. A message from the octopus of inescapable despair 20.10. Brian’s attempt to woo Jane 20.11. What next? 20.12. Key terms that I’ve discovered 20.13. Smart Alex’s tasks 20.14. Further reading 21 Epilogue: life after discovering statistics 21.1. Nice emails 21.2. Everybody thinks that I’m a statistician 21.3. Craziness on a grand scale 21.3.1. Catistics 21.3.2. Cult of underlying numerical truths 21.3.3. And then it got really weird Glossary Appendix References Index