دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Fei Tao, Meng Zhang, A.Y.C. Nee سری: ISBN (شابک) : 012817630X, 9780128176306 ناشر: Academic Press سال نشر: 2019 تعداد صفحات: 268 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 15 مگابایت
در صورت تبدیل فایل کتاب Digital Twin Driven Smart Manufacturing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تولید هوشمند دوقلو دیجیتال نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Digital Twin Driven Smart Manufacturing پیشینه، آخرین تحقیقات و مدلهای کاربردی فناوری دوقلو دیجیتال را بررسی میکند و نشان میدهد که چگونه میتواند در یک فرآیند تولید هوشمند نقش محوری داشته باشد. علاقه به دوقلوهای دیجیتال در تولید ناشی از نیاز به قابلیت اطمینان محصول عالی و گرایش کلی به سمت سیستمهای تولید هوشمند و متصل است. این کتاب نقطه ورود ایده آلی به این موضوع برای خوانندگان در صنعت و دانشگاه فراهم می کند، زیرا به این سؤالات پاسخ می دهد: (الف) دوقلو دیجیتال چیست؟ (ب) چگونه یک دوقلو دیجیتال بسازیم؟ (ج) چگونه از یک دوقلو دیجیتال برای بهبود کارایی تولید استفاده کنیم؟ (د) فعالیت های ضروری در اجرای یک دوقلو دیجیتال چیست؟ (ه) مهمترین موانعی که برای استقرار موفقیت آمیز یک دوقلو دیجیتال باید بر طرف شود چیست؟ (و) روابط بین دوقلو دیجیتال و فناوری های جدید چیست؟ (ز) چگونه می توان دوقلوهای دیجیتال را با فناوری های جدید ترکیب کرد تا به راندمان و هوشمندی بالا در تولید دست یافت؟
این کتاب بر روی این مشکلات تمرکز دارد زیرا هدف آن کمک به خوانندگان است تا بهترین استفاده را از فناوری دوقلو دیجیتال در جهت هوشمند سازی داشته باشند. تولید.
Digital Twin Driven Smart Manufacturing examines the background, latest research, and application models for digital twin technology, and shows how it can be central to a smart manufacturing process. The interest in digital twin in manufacturing is driven by a need for excellent product reliability, and an overall trend towards intelligent, and connected manufacturing systems. This book provides an ideal entry point to this subject for readers in industry and academia, as it answers the questions: (a) What is a digital twin? (b) How to construct a digital twin? (c) How to use a digital twin to improve manufacturing efficiency? (d) What are the essential activities in the implementation of a digital twin? (e) What are the most important obstacles to overcome for the successful deployment of a digital twin? (f) What are the relations between digital twin and New Technologies? (g) How to combine digital twin with the New Technologies to achieve high efficiency and smartness in manufacturing?
This book focuses on these problems as it aims to help readers make the best use of digital twin technology towards smart manufacturing.
Cover Digital Twin Driven Smart Manufacturing Copyright Preface Part 1: Background and Connotation 1 Background and Concept of Digital Twin 1.1 Background of the Development of Digital Twin 1.2 History of Digital Twin 1.3 Concept of Digital Twin 1.3.1 Theoretical Definition of Digital Twin 1.3.2 Digital Twin in the Views of Enterprises 1.3.3 Cores of Digital Twin: Models, Data, Connections, and Services 1.4 Digital Twin and Related Concepts 1.4.1 Digital Twin and Physical/Virtual Space 1.4.2 Digital Twin and Virtual Prototype 1.4.3 Digital Twin and PLM 1.4.4 Digital Twin and Digital Asset/Enterprise/Industry 1.4.5 Digital Twin and Digital Thread 1.4.6 Digital Twin and Digital Shadow 1.5 Value of Digital Twin 1.5.1 Increasing Visibility 1.5.2 Reducing Time to Market 1.5.3 Keeping Optimal Operation 1.5.4 Reducing Energy Consumption 1.5.5 Reducing Maintenance Cost 1.5.6 Increasing User Engagement 1.5.7 Fusing Information Technologies 1.6 Summary References 2 Applications of Digital Twin 2.1 Digital Twin in Product Lifecycle 2.1.1 Digital Twin in Design Stage 2.1.2 Digital Twin in Production Stage 2.1.3 Digital Twin in Service Stage 2.1.4 Digital Twin Across Multiple Stages 2.1.5 Observations 2.1.5.1 Production and PHM Are the Most Popular Applied Fields for the DT 2.1.5.2 DT Has Attracted the Most Attention in the United States, China, and Europe 2.2 Digital Twin in Industrial Applications 2.2.1 Digital Twin in Aerospace 2.2.2 Digital Twin in Electric Power Generation 2.2.3 Digital Twin in Automotive 2.2.4 Digital Twin in Oil and Gas 2.2.5 Digital Twin in Healthcare and Medicine 2.2.6 Digital Twin in Maritime/Shipping 2.2.7 Digital Twin in City Management 2.2.8 Digital Twin in Agriculture 2.2.9 Digital Twin in Construction 2.2.10 Digital Twin in Environmental Protection 2.2.11 Digital Twin in Security and Emergency 2.2.12 Observations 2.3 Future Market for Digital Twin 2.4 Challenges of Digital Twin Applications 2.4.1 Cognitive and Technical Level of People 2.4.2 Technology and Infrastructure 2.4.3 Support Tools 2.4.4 Standards and Specifications 2.4.5 Cost Control and Management 2.4.6 Cyber Security and Intellectual Property Rights 2.4.7 Insufficient Development of Digital Twin 2.5 Summary References 3 Five-Dimension Digital Twin Modeling and Its Key Technologies 3.1 Traditional Three-Dimension Digital Twin 3.1.1 Three-Dimension Digital Twin 3.1.2 Existing Works on Digital Twin Modeling 3.2 New Requirements on Digital Twin 3.2.1 From Application Aspect: Requiring Wider Application 3.2.2 From Technology Aspect: Requiring to Embrace New IT 3.2.3 From Modeling Object Aspect: Requiring Data and Services 3.2.4 From Modeling Method Aspect: Requiring High-Fidelity Virtual Modeling 3.3 Extended Five-Dimension Digital Twin 3.3.1 Five-Dimension Digital Twin 3.3.2 Physical Entity 3.3.3 Virtual Entity 3.3.4 Services 3.3.5 Digital Twin Data 3.3.6 Connection 3.4 Application-Oriented Three-Level Digital Twins 3.4.1 Unit-Level Digital Twin 3.4.2 System-Level Digital Twin 3.4.3 System of Systems-Level Digital Twin 3.5 Key Technologies for Digital Twin Modeling 3.5.1 Key Technologies for Physical Entity Modeling 3.5.2 Key Technologies for Virtual Entity Modeling 3.5.3 Key Technologies for Services Modeling 3.5.4 Key Technologies for Digital Twin Data Modeling 3.5.5 Key Technologies for Connection Modeling 3.6 Eight Rules for Digital Twin Modeling 3.6.1 Data and Knowledge Based 3.6.2 Modularization 3.6.3 Light Weight 3.6.4 Hierarchy 3.6.5 Standardization 3.6.6 Servitization 3.6.7 Openness and Scalability 3.6.8 Robustness 3.7 Summary References Part 2: Digital Twin Driven Smart Manufacturing 4 Digital Twin Shop-Floor 4.1 Evolution Path of Shop-Floor 4.1.1 Production Resource Management 4.1.2 Production Activity Planning 4.1.3 Production Process Control 4.2 Related Works 4.2.1 Data Collection 4.2.2 Data Processing 4.2.3 Information System Construction 4.2.4 Virtual Model Construction 4.2.5 Exploration of New Modes for Production 4.3 Concept of Digital Twin Shop-Floor 4.3.1 Concept of Digital Twin Shop-Floor 4.3.2 Operation Process of Digital Twin Shop-Floor 4.4 Implementation of Digital Twin Shop-Floor 4.4.1 Physical Shop-Floor 4.4.2 Virtual Shop-Floor 4.4.3 Shop-Floor Service System 4.4.4 Shop-Floor Digital Twin Data 4.5 Characteristics of Digital Twin Shop-Floor 4.5.1 Cyber–Physical Fusion 4.5.2 Data Driven 4.5.3 Fusion of Data From All of the Elements, Processes, and Businesses 4.5.4 Iterative Optimization 4.6 Key Technologies for Digital Twin Shop-Floor 4.7 Challenges for Digital Twin Shop-Floor 4.8 Summary References 5 Equipment Energy Consumption Management in Digital Twin Shop-Floor 5.1 Introduction 5.2 Framework of EECM in Digital Twin Shop-Floor 5.3 Implementation of EECM in Digital Twin Shop-Floor 5.3.1 Physical Machine Tool 5.3.2 Virtual Machine Tool 5.3.3 EECM Services 5.3.4 Digital Twin Data 5.4 Potential Advantages of EECM in Digital Twin Shop-Floor 5.4.1 Advantages in Energy Consumption Monitoring 5.4.2 Advantages in Energy Consumption Analysis 5.4.3 Advantages in Energy Consumption Optimization 5.5 Summary References 6 Cyber–Physical Fusion in Digital Twin Shop-Floor 6.1 Introduction 1. Connection and Interconnection on the Shop-Floor 2. Digital/Virtual Shop-Floor Modeling/Simulation 3. Shop-Floor Data/Information Integration 4. Shop-Floor Optimal Operations and Precision Management 6.2 Reference Architecture for Digital Twin Shop-Floor 6.3 Physical Elements Fusion 1 Man–Machine–Material–Environment Smart Connection and Interconnection 2 Man–Machine–Material–Environment Smart Communication and Computing 3 Man–Machine–Material–Environment Smart Control and Interaction 4 Man–Machine–Material–Environment Smart Cooperation and Convergence 6.4 Models Fusion 1 Construction of the Multidimension Models 2 Evaluation and Verification of the Multidimension Models 3 Correlation and Mapping Mechanism of the Multidimension Models 4 Theory and Method of the Multidimension Models Consistency 6.5 Data Fusion 1 Data Generation, Modeling, and Cleaning 2 Data Correlation, Clustering, and Mining 3 Data Iteration, Evolution, and Fusion 6.6 Services Fusion 1 Data-Driven Service Generation 2 Service Smart Management and Optimization 3 Service Fusion and Application 6.7 Summary References 7 Digital Twin-Driven Prognostics and Health Management 7.1 Introduction 7.2 Digital Twin for Complex Equipment 7.2.1 Five-Dimension Digital Twin for Complex Equipment 7.2.2 Modeling for Each Dimension of Digital Twin 7.3 Digital Twin-Driven PHM Method 7.3.1 Framework 7.3.1.1 Inputs 7.3.1.2 Roles of DT 7.3.1.3 Outputs 7.3.2 Procedure 7.3.2.1 Model Calibration 7.3.2.2 Inconsistency Caused Judgment 7.3.2.3 Identification and Prediction of Fault Cause 7.3.3 Coevolution Mechanism 7.4 Case Study 7.4.1 Problem Description 7.4.2 Digital Twin-Driven PHM for Yaw System 7.4.3 Digital Twin-Driven PHM for the Gearbox 7.5 Summary References Part 3: Digital Twin and New Technologies 8 Digital Twin and Cloud, Fog, Edge Computing 8.1 Introduction 8.2 Three-Level Digital Twins in Manufacturing 8.3 From Cloud Computing to Fog Computing and Edge Computing 8.3.1 Cloud Computing 8.3.2 Fog Computing 8.3.3 Edge Computing 8.4 Three-Level Digital Twins Based on Edge Computing, Fog Computing, and Cloud Computing 8.4.1 Unit-Level Digital Twin Based on Edge Computing 8.4.2 System-Level Digital Twin Based on Fog Computing 8.4.3 System of Systems–Level Digital Twin Based on Cloud Computing 8.5 Summary References 9 Digital Twin and Big Data 9.1 Introduction 9.2 Big Data 9.2.1 Brief History of Big Data 9.2.2 Concept of Big Data 9.2.3 Characteristics of Big Data 9.3 Lifecycle of Big Data in Manufacturing 9.3.1 Data Sources 9.3.2 Data Collection 9.3.3 Data Storage 9.3.4 Data Processing 9.3.5 Data Visualization 9.3.6 Data Transmission 9.3.7 Data Application 9.4 360° Comparison of Digital Twin and Big Data in Manufacturing 9.4.1 Comparison From General Perspective 9.4.1.1 Similarities Between Big Data and Digital Twin 9.4.1.2 Differences Between Big Data and Digital Twin 9.4.2 Comparison From Data Perspective 9.4.2.1 Advantages of Big Data Over Digital Twin 9.4.2.2 Advantages of Digital Twin Over Big Data 9.5 Complementarity Between Big Data and Digital Twin 9.6 Fusion of Digital Twin and Big Data in Manufacturing 9.6.1 Product Design Driven by Fusion of Digital Twin and Big Data 9.6.2 Production Driven by Fusion of Digital Twin and Big Data 9.6.3 PHM Driven by Fusion of Digital Twin and Big Data 9.7 Summary References 10 Digital Twin and Services 10.1 Introduction 10.2 Services in Manufacturing 10.2.1 Concept of Servitization in Manufacturing 10.2.2 Framework of Service-Oriented Smart Manufacturing 10.3 Services in Digital Twin 10.4 Digital Twin Service Generation 10.4.1 Physical Entity Servitization 10.4.2 Virtual Entity Servitization 10.4.3 Data Servitization 10.5 Digital Twin Service Management 10.6 Digital Twin Service Application 10.6.1 Digital Twin Service Application in Product Design 10.6.2 Digital Twin Service Application in Production 10.6.3 Digital Twin Service Application in PHM 10.7 Summary References 11 Digital Twin and Virtual Reality and Augmented Reality/Mixed Reality 11.1 Introduction 11.2 VR in Design, Manufacturing, and Service 11.2.1 VR in Design 11.2.2 VR in Manufacturing 11.2.3 VR in Service 11.3 AR in Design, Manufacturing, and Service 11.3.1 AR in Design 11.3.2 AR in Manufacturing 11.3.3 AR in Service 11.4 Comparison Between VR and AR 11.5 Digital Twin and VR and AR 11.5.1 Existing Studies and Applications of VR and AR in Digital Twin 11.5.2 Application Framework of VR and AR in Digital Twin 11.6 Digital Twin-Driven Assembly Combining VR and AR 11.6.1 Digital Twin-Driven Assembly Mechanism Combining VR and AR 11.6.2 Application of VR and AR in Assembly Based on Digital Twin 11.7 Summary References 12 Digital Twin, Cyber–Physical System, and Internet of Things 12.1 Introduction 12.2 CPS in Manufacturing 12.2.1 Brief History and Concept of CPS 12.2.2 CPS-Based Manufacturing 12.3 IoT in Manufacturing 12.3.1 Brief History and Concept of IoT 12.3.2 Applications of IoT Toward Smart Manufacturing 12.4 Digital Twin and CPS 12.4.1 Digital Twin and CPS 12.4.2 Implementation of Digital Twin-Based CPS 12.5 IoT in Digital Twin-Based CPS 12.6 Summary References Index Back Cover