دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3 نویسندگان: Lizhe Tan Ph.D. Electrical Engineering University of New Mexico, Jean Jiang Ph.D. Electrical Engineering University of New Mexico سری: ISBN (شابک) : 0128150718, 9780128150719 ناشر: Academic Press سال نشر: 2018 تعداد صفحات: 902 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 32 مگابایت
در صورت تبدیل فایل کتاب Digital Signal Processing: Fundamentals and Applications به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پردازش سیگنال دیجیتال: مبانی و کاربردها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
پردازش سیگنال دیجیتال: مبانی و کاربردها، ویرایش سوم، نه تنها دانش آموزان را با اصول اساسی DSP آشنا می کند، بلکه دانش کاری را نیز ارائه می دهد که آنها با خود در حرفه مهندسی خود می برند. بسیاری از مثالهای آموزنده و کار شده برای نشان دادن مطالب استفاده میشوند و استفاده از ریاضیات برای درک آسانتر مفاهیم به حداقل میرسد. به این ترتیب، این عنوان به عنوان مرجعی برای دانشجویان غیر مهندسی و مهندسان شاغل نیز مفید است. این کتاب فراتر از نظریه DSP است و اجرای الگوریتم ها را در سخت افزار و نرم افزار نشان می دهد.
موضوعات اضافی تحت پوشش عبارتند از: فیلتر تطبیقی با کاهش نویز و لغو پژواک، فشردهسازی گفتار، نمونهبرداری سیگنال، تحقق فیلتر دیجیتال، طراحی فیلتر، برنامههای چندرسانهای، نمونهبرداری بیش از حد، و غیره. موضوعات پیشرفتهتر نیز پوشش داده میشوند، مانند به عنوان فیلترهای تطبیقی، فشرده سازی گفتار مانند PCM، μ-قانون، ADPCM، و DSP چند نرخی، کدگذاری زیر باند ADC بیش از حد نمونه برداری، و تبدیل موجک.
Digital Signal Processing: Fundamentals and Applications, Third Edition, not only introduces students to the fundamental principles of DSP, it also provides a working knowledge that they take with them into their engineering careers. Many instructive, worked examples are used to illustrate the material, and the use of mathematics is minimized for an easier grasp of concepts. As such, this title is also useful as a reference for non-engineering students and practicing engineers. The book goes beyond DSP theory, showing the implementation of algorithms in hardware and software.
Additional topics covered include adaptive filtering with noise reduction and echo cancellations, speech compression, signal sampling, digital filter realizations, filter design, multimedia applications, over-sampling, etc. More advanced topics are also covered, such as adaptive filters, speech compression such as PCM, µ-law, ADPCM, and multi-rate DSP, over-sampling ADC subband coding, and wavelet transform.
Cover Digital Signal Processing: Fundamentals and Applications Copyright Preface 1 Introduction to Digital Signal Processing Basic Concepts of Digital Signal Processing Basic Digital Signal Processing Examples in Block Diagrams Digital Filtering Signal Frequency (Spectrum) Analysis Overview of Typical Digital Signal Processing in Real-World Applications Digital Crossover Audio System Interference Cancellation in Electrocardiography Speech Coding and Compression Compact-Disc Recording System Vibration Signature Analysis for Defected Gear Tooth Digital Image Enhancement Digital Signal Processing Applications Summary 2 Signal Sampling and Quantization Sampling of Continuous Signal Signal Reconstruction Practical Considerations for Signal Sampling: Anti-Aliasing Filtering Practical Considerations for Signal Reconstruction: Anti-Image Filter and Equalizer Analog-to-Digital Conversion, Digital-to-Analog Conversion, and Quantization Summary MATLAB Programs Problems 3 Digital Signals and Systems Digital Signals Common Digital Sequences Generation of Digital Signals Linear Time-Invariant, Causal Systems Linearity Time Invariance Causality Difference Equations and Impulse Responses Format of Difference Equation System Representation Using Its Impulse Response Digital Convolution Bounded-Input and Bounded-Output Stability Summary Problems 4 Discrete Fourier Transform and Signal Spectrum Discrete Fourier Transform Fourier Series Coefficients of Periodic Digital Signals Discrete Fourier Transform Formulas Amplitude Spectrum and Power Spectrum Spectral Estimation Using Window Functions Application to Signal Spectral Estimation Fast Fourier Transform Method of Decimation-in-Frequency Method of Decimation-in-Time Summary Problems 5 The z-Transform Definition Properties of the z-Transform Inverse z-Transform Partial Fraction Expansion and Look-Up Table Partial Fraction Expansion Using MATLAB Power Series Method Inversion Formula Method Solution of Difference Equations Using the z-Transform Two-Sided z-Transform Summary Problems 6 Digital Signal Processing Systems, Basic Filtering Types, and Digital Filter Realizations Difference Equation and Digital Filtering Difference Equation and Transfer Function Impulse Response, Step Response, and System Response The z-Plane Pole-Zero Plot and Stability Digital Filter Frequency Response Basic Types of Filtering Realization of Digital Filters Direct-Form I Realization Direct-Form II Realization Cascade (Series) Realization Parallel Realization Application: Signal Enhancement and Filtering Preemphasis of Speech Bandpass Filtering of Speech Enhancement of ECG Signal Using Notch Filtering Summary Problems 7 Finite Impulse Response Filter Design Finite Impulse Response Filter Format Fourier Transform Design Window Method Applications: Noise Reduction and Two-Band Digital Crossover Noise Reduction Speech Noise Reduction Noise Reduction in Vibration Signal Two-Band Digital Crossover Frequency Sampling Design Method Optimal Design Method Design of FIR Differentiator and Hilbert Transformer Realization Structures of Finite Impulse Response Filters Transversal Form Linear Phase Form Coefficient Accuracy Effects on Finite Impulse Response Filters Summary of FIR Design Procedures and Selection of the FIR Filter Design Methods in Practice Summary MATLAB Programs Problems 8 Infinite Impulse Response Filter Design Infinite Impulse Response Filter Format Bilinear Transformation Design Method Analog Filters Using Lowpass Prototype Transformation Bilinear Transformation and Frequency Warping Bilinear Transformation Design Procedure Digital Butterworth and Chebyshev Filter Designs Lowpass Prototype Function and Its Order Lowpass and Highpass Filter Design Examples Bandpass and Bandstop Filter Design Examples Higher-Order Infinite Impulse Response Filter Design Using the Cascade Method Application: Digital Audio Equalizer Impulse Invariant Design Method Pole-Zero Placement Method for Simple Infinite Impulse Response Filters Second-Order Bandpass Filter Design Second-Order Bandstop (Notch) Filter Design First-Order Lowpass Filter Design First-Order Highpass Filter Design Realization Structures of Infinite Impulse Response Filters Realization of Infinite Impulse Response Filters in Direct-Form I and Direct-Form II Realization of Higher-Order Infinite Impulse Response Filters Via the Cascade Form Application: 60-Hz Hum Eliminator and Heart Rate Detection Using Electrocardiography Coefficient Accuracy Effects on Infinite Impulse Response Filters Application: Generation and Detection of DTMF Tones Using the Goertzel Algorithm Single-Tone Generator Dual-Tone Multifrequency Tone Generator Goertzel Algorithm Dual-Tone Multifrequency Tone Detection Using the Modified Goertzel Algorithm Summary of Infinite Impulse Response (IIR) Design Procedures and Selection of the IIR Filter Design Methods in Practice Summary Problems 9 Adaptive Filters and Applications Introduction to Least Mean Square Adaptive Finite Impulse Response Filters Basic Wiener Filter Theory and Adaptive Algorithms Wiener Filter Theory and Linear Prediction Basic Wiener Filter Theory Forward Linear Prediction Steepest Descent Algorithm Least Mean Square Algorithm Recursive Least Squares Algorithm Applications: Noise Cancellation, System Modeling, and Line Enhancement Noise Cancellation System Modeling Line Enhancement Using Linear Prediction Other Application Examples Canceling Periodic Interferences Using Linear Prediction Electrocardiography Interference Cancellation Echo Cancellation in Long-Distance Telephone Circuits Summary Problems 10 Waveform Quantization and Compression Linear Midtread Quantization μ-Law Companding Analog μ-Law Companding Digital μ-Law Companding Examples of Differential Pulse Code Modulation (DPCM), Delta Modulation, and Adaptive DPCM G.721 Examples of DPCM and Delta Modulation Adaptive Differential Pulse Code Modulation G.721 Discrete Cosine Transform, Modified Discrete Cosine Transform, and Transform Coding in MPEG Audio Discrete Cosine Transform Modified Discrete Cosine Transform Transform Coding in MPEG Audio Summary MATLAB Programs Problems 11 Multirate Digital Signal Processing, Oversampling of Analog-to-Digital Conversion, and Undersampling of Bandp ... Multirate Digital Signal Processing Basics Sampling Rate Reduction by an Integer Factor Sampling Rate Increase by an Integer Factor Changing Sampling Rate by a Non-Integer Factor L/M Application: CD Audio Player Multistage Decimation Polyphase Filter Structure and Implementation Oversampling of Analog-To-Digital Conversion Oversampling and ADC Resolution Sigma-Delta Modulation ADC Application Example: CD Player Undersampling of Bandpass Signals Summary Problems MATLAB Problems MATLAB Project 12 Subband and Wavelet-Based Coding Subband Coding Basics Subband Decomposition and Two-Channel Perfect Reconstruction-Quadrature Mirror Filter Bank Subband Coding of Signals Wavelet Basics and Families of Wavelets Multiresolution Equations Discrete Wavelet Transform Wavelet Transform Coding of Signals MATLAB Programs Summary Problems 13 Image Processing Basics Image Processing Notation and Data Formats 8-Bit Gray Level Images 24-Bit Color Images 8-Bit Color Images Intensity Images RGB Components and Grayscale Conversion MATLAB Functions for Format Conversion Image Histogram and Equalization Grayscale Histogram and Equalization 24-Bit Color Image Equalization 8-Bit Indexed Color Image Equalization MATLAB Functions for Equalization Image Level Adjustment and Contrast Linear Level Adjustment Adjusting the Level for Display MATLAB Functions for Image Level Adjustment Image Filtering Enhancement Lowpass Noise Filtering Median Filtering Edge Detection MATLAB Functions for Image Filtering Image Pseudo-Color Generation and Detection Image Spectra Image Compression by Discrete Cosine Transform Two-Dimensional Discrete Cosine Transform Two-Dimensional JPEG Grayscale Image Compression Example JPEG Color Image Compression Image Compression Using Wavelet Transform Coding Creating a Video Sequence by Mixing two Images Video Signal Basics Analog Video Digital Video Motion Estimation in Video Summary Problems 14 Hardware and Software for Digital Signal Processors Digital Signal Processor Architecture DSP Hardware Units Multiplier and Accumulator Shifters Address Generators DSPs and Manufactures Fixed-Point and Floating-Point Formats Fixed-Point Format Floating-Point Format IEEE Floating-Point Formats Fixed-Point DSPs Floating-Point DSPs Finite Impulse Response and Infinite Impulse Response Filter Implementations in Fixed-Point Systems Digital Signal Processing Programming Examples Overview of TMS320C67x DSK Concept of Real-Time Processing Linear Buffering Sample C Programs Additional Real-Time DSP Examples Adaptive Filtering Using the TMS320C6713 DSK Signal Quantization Using the TMS320C6713 DSK Sampling Rate Conversion Using the TMS320C6713 DSK Summary Problems Appendix A: Introduction to the Matlab Environment Basic Commands and Syntax MATLAB Array and Indexing Plot Utilities: Subplot, Plot, Stem, and Stair MATLAB Script Files MATLAB Functions Appendix B: Review of Analog Signal Processing Basics Fourier Series and Fourier Transform Sine-Cosine Form Amplitude-Phase Form Complex Exponential Form Spectral Plots Fourier Transform Laplace Transform Laplace Transform and Its Table Solving Differential Equations Using Laplace Transform Transfer Function Poles, Zeros, Stability, Convolution, and Sinusoidal Steady-State Response Poles, Zeros, and Stability Convolution Sinusoidal Steady-State Response Problems Appendix C: Normalized Butterworth and Chebyshev Functions Normalized Butterworth Function Normalized Chebyshev Function Appendix D: Sinusoidal Steady-State Response of Digital Filters Sinusoidal Steady-State Response Properties of the Sinusoidal Steady-State Response Appendix E: Finite Impulse Response Filter Design Equations by Frequency Sampling Design Method Appendix F: Wavelet Analysis and Synthesis Equations Basic Properties Analysis Equations Wavelet Synthesis Equations Appendix G: Review of Discrete-Time Random Signals Random Variable Statistical Properties Random Signal Statistical Properties Wide-Sense Stationary Random Signals Ergodic Signals Statistical Properties of Linear System Output Signal Z-Transform Domain Representation of Statistical Properties Appendix H: Some Useful Mathematical Formulas Answers to Selected Problems References Index A B C D E F G H I J K L M N O P Q R S T U V W Y Z Back Cover