دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: R Anand
سری:
ISBN (شابک) : 9781683928027, 2022932248
ناشر:
سال نشر:
تعداد صفحات: 664
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 41 مگابایت
در صورت تبدیل فایل کتاب Digital Signal Processing. An Introduction به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پردازش سیگنال دیجیتال یک مقدمه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
LICENSE, DISCLAIMER OF LIABILITY, AND LIMITED WARRANTY An Introduction1.1 INTRODUCTION 1.2 APPLICATIONS OF DIGITAL SIGNAL PROCESSING 1.3 SIGNALS 1.4 CLASSIFICATION OF SIGNALS 1.5 SIGNAL PROCESSING SYSTEMS 1.6 SIGNAL PROCESSING 1.7 ADVANTAGES OF DIGITAL SIGNAL PROCESSING OVER ANALOG SIGNAL PROCESSING 1.8 ELEMENTS OF DIGITAL SIGNAL PROCESSING SYSTEM EXERCISES 2.1 INTRODUCTION 2.2 DISCRETE-TIME SIGNALS T 0 < n < да Transformation of the Dependent Variable (Signal Amplitude): 2.3 DISCRETE-TIME SYSTEMS EXAMPLE 2. 1 EXAMPLE 2. 2 SOLUTION: EXAMPLE 2. 3 EXAMPLE 2.4 = S A = EXAMPLE 2.5 = SI A = 1+1A+1 Al2+... 2.4 CONVOLUTION OF TWO DISCRETE-TIME SIGNALS EXAMPLE 2.6 t t t t t t EXAMPLE 2.7 A i EXAMPLE 2.8 7 ^ 1 - A J EXAMPLE 2.9 2.5 INVERSE SYSTEMS = I — I u (n) 13 ) 13 ) 2.6 CORRELATION OF TWO DISCRETE-TIME SIGNALS EXAMPLE 2.12 t t t t t t EXAMPLE 2.13 2.7 SIGNALS AND VECTORS x = c 1 x + x 1 v ■ x = |x||u\\ cos 0 v ■ x = 0. d Ге t 2 2 / xj 1 d Г гt И2 = lxl2 +1 x ’ = J^\\х(t)|2 dt + J EXAMPLE 2.14 — 2.8 REPRESENTATION OF SIGNALS ON ORTHOGONAL BASIS SAMPLING OF CONTINUOUS-TIME SIGNALS = A cosl 2n max-n + 0 I s I Fs J EXAMPLE 2.15 EXAMPLE 2.16 F 3 = 2П 2.10 RECONSTRUCTION OF A SIGNAL FROM ITS SAMPLE VALUES no. T j s(nTs ) EXERCISES NUMERICAL EXERCISES 9. tt t 13 J 14 J 3.1 INTRODUCTION 3.2 DEFINITION OF THE z -TRANSFORM 3.3 REGION OF CONVERGENCE (ROC) t = s ( -2 ) z2 + s (-1) z1 + s ( 0 ) z0 + s (1) z-1 + s ( 2 ) z 2 t EXAMPLE 3.2 =z -° + z-1 + z-2 + ... + z -x= 1 - Az-1 - B-1 z + AB-1 B - ABz-1 - z + A ~ B+A - z - ABz- PROPERTIES OF z -TRANSFORM EXAMPLE 3.3 \" [1, n > 0\" EXAMPLE 3.4 t Ans(n) < \' > S f-^ IA ) EXAMPLE 3.5 Z [ u(-n)] = S ( z 1) = —^--1 EXAMPLE 3.6 EXAMPLE 3.7 t t EXAMPLE 3.8 = S[ Az-1 ] n + j = -~^ 3.5 SOME COMMON z -TRANSFORM PAIRS 3.6 THE INVERSE z-TRANSFORM dz = < EXAMPLE 3.9 EXAMPLE 3.10 = У (z - z) - + + EXAMPLE 3.11 2-3z-1+z-2 2 - 3 z-1 1.3 -1.7 42 . 1 ч— z ч— z +.... 24 7 J - 3 z-3 7 -4 15 3 4 3-17- +2 2 z2 + 6 z3 +14 z4 +... - 4 z2 -18 z2 +12 z3 30z3 - 28z4 EXAMPLE 3.12 /з - 6 z -2 -12 z 43 + + + + 6 z -2 + 12 z 43 - 6 z -2 +12 z 43 + + + + 6 z ~2 + 12 z 43 - 8 z -3 -16 z -4 + + + 6 z -2 + 20 z 43 + 16 z -4 EXAMPLE 3.13 14 ) EXAMPLE 3.14 z 3 X ;t - 4 • a a a 11 a2 = + Z-1 3.7 SYSTEM FUNCTION EXAMPLE 3.15 3.8 POLES AND ZEROS OF RATIONAL z -TRANSFORMS EXAMPLE 3.16 3.9 SOLUTION OF DIFFERENCE EQUATIONS USING z-TRANSFORM EXAMPLE 3.17 Y (z) [1 - Az-1 ] = A +1—r () 1 - Az-1 (1 - z-1 )(1 - Az-1) A A A L1 - A ) L1 - A ) Y (n) = + + + f- I (1 - A) I 1 - A L - EXAMPLE 3.18 EXAMPLE 3.19 3.10 ANALYSIS OF LINEAR TIME-INVARIANT (LTI) SYSTEMS IN THE z -DOMAIN EXAMPLE 3.20 p TT. \\ 3 ) EXAMPLE 3.2 1 I 4 ) or —— = (1 - 0.5z 1) 1 -72z 1 + z 2 + ( jp A + I 1 - e 4 z-1 I 14 J Z h(n)| X EXAMPLE 3.2 2 ■ \\ 2 J EXAMPLE 3.2 3 EXAMPLE 3.2 4 I 1 -1 z-1 II 1 -1 z-1 I (1 ^ n , ч y(n) = I — I u(n) \\ 2 J EXAMPLE 3.25 EXAMPLE 3.26 z a1 = a =—1— h (n) = Z-1 [ H ( z )] D * + T EXERCISES NUMERICAL EXERCISES 4.1 INTRODUCTION TO DISCRETE-TIME FOURIER TRANSFORM (DTFT) 4.2 DEVELOPMENT OF THE DISCRETE-TIME FOURIER TRANSFORM (DTFT) 4.3 CONVERGENCE OF THE DTFT EXAMPLE 4. 1 EXAMPLE 4. 2 EXAMPLE 4.3 z s(ew)=y e-jwn = 4.4 FOURIER TRANSFORM OF DISCRETE-TIME PERIODIC SIGNALS S(e )= X 2pAkd w~~n~ EXAMPLE 4.4 - 2nm)+ X 2%d (w + w0 “ 7 Q-n- ^ 7 2 p A f 2 p A — + pd w + , -p < w < p EXAMPLE 4.5 4.5 PROPERTIES OF THE DTFT If s(n) < DTFT > {s (ew)} if «(n) < DTFT s s (ew) EXAMPLE 4.6 S ( e )=(1 - e - jw ) + p ^ d (w - wp k ) if s(n) < DTFT s s (ew) EXAMPLE 4.7 [1 - e-w ] (kw \'1 к 2 ) = e4w I sin ( 5w ) , sin (w) ds (ejw) d Г-A jdS (ejw) “ jdS ( e jw ) EXAMPLE 4.8 EXAMPLE 4.9 1p 1 1 1 1 \" EXAMPLE 4.10 s (ew )=td^ S A 7 a 2 =7 T 1 - A1\' B J Y(ejw)= f_B-\' J- +A — ( A ^ = X ■ n) t J si(ej ) EXAMPLE 4.11 p 4.6 TABULATION OF PROPERTIES OF DTFT 4.7 TABULATION OF DTFT PAIRS Discrete-time signal s (n) 4.8 DUALITY мn)=7т X s2(-k)j0n EXAMPLE 4.12 Ak = < Ak = p p 4.9 DISCRETE-TIME LTI SYSTEMS CHARACTERIZED BY LINEAR CONSTANT-COEFFICIENT DIFFERENCE EQUATIONS EXAMPLE 4.14 Y(ejw) H (ew )=id?? (4) EXAMPLE 4.15 H (ejw ) = rj- ( ) s (ew) I 4 JI a, = -2 : 1 ”4 .,. .(1^. J1^n ,. 12 J 12 J EXAMPLE 4.16 7 y (ew) EXERCISES NUMERICAL EXERCISES M ... . w+— I 2 Л1 H1 (j )= 1 1 1 12 J An . . V 2 J 5.1 INTRODUCTION 5.2 DEFINITION OF DFT EXAMPLE 5.1 EXAMPLE 5.2 EXAMPLE 5.3 5.3 THE DFT AS A LINEAR TRANSFORMATION TOOL sN = ■ s(0) ’ EXAMPLE 5.4 5.4 PROPERTIES OF DFT Step in computation of circular convolution. EXAMPLE 5.5 EXAMPLE 5.6 5.5 TABULATION OF PROPERTIES OF DFT 5.6 RELATIONSHIP BETWEEN DFT AND z -TRANSFORM LINEAR CONVOLUTION USING DFT EXAMPLE 5.7 5.8 PITFALLS IN USING DFT EXAMPLE 5.8 ( N ^ \\ 2 ) = - eJ + — eJ eJ + e J EXAMPLE 5.9 EXAMPLE 5.1 0 EXAMPLE 5.1 1 b. SI K\\ = S *|—+ K \\ 2 J 11 2 J EXAMPLE 5.13 |Д m )) 1Д m )) (I F J) (I M )) EXERCISES NUMERICAL EXERCISES t t 6.1 INTRODUCTION 6.2 GOERTZEL ALGORITHM (1 - WKz-1 )(1 - WKz-1) . (2 p K A l~ 6.3 FAST FOURIER TRANSFORM ALGORITHMS EXAMPLE 6.1 n „ N \\ o/n 1 V / / . . N ^ V 2 2 (N -11 12 ) IZ 4 / 4 ( . N ^ EXAMPLE 6.2 EXERCISES 7.1 INTRODUCTION EXAMPLE 7.1 7.2 MAJOR FACTORS INFLUENCING OUR CHOICE OF SPECIFIC REALIZATION 7.3 NETWORK STRUCTURES FOR IIR SYSTEMS EXAMPLE 7.2 EXAMPLE 7.3 EXAMPLE 7.5 1 — 1 NETWORK STRUCTURE FOR FIR SYSTEMS H (z) = T1 =z +x EXAMPLE 7. 6 EXAMPLE 7. 7 Yh(°) Yh(2) Yh<6) Yh<7) EXAMPLE 7. 8 or Y(z) [1 - b z-1 ] = Y‘(z) [z-1 - b ] EXAMPLE 7.9 (1+ 55 55 55 (1 — a z ) (1 — b z ) 1 - a z = 0 EXAMPLE 7.10 EXAMPLE 7.11 EXAMPLE 7.12 EXERCISES NUMERICAL EXERCISES 8.1 INTRODUCTION Review of Analog Filter Design Z-1 [ H (z) = Z-1 ] 1 + e Q 8.2 MAJOR CONSIDERATIONS IN USING DIGITAL FILTERS 8.3 COMPARISON BETWEEN DIGITAL AND ANALOG FILTERS 8.4 COMPARISON BETWEEN IIR AND FIR DIGITAL FILTERS 8.5 REALIZATION PROCEDURES FOR DIGITAL FILTERS 8.6 NOTCH FILTERS 8.7 COMB FILTERS 8.8 ALL-PASS FILTERS 8.9 DIGITAL SINUSOIDAL OSCILLATORS 8.10 DIGITAL RESONATORS H ( z) = EXERCISES 9.1 INTRODUCTION 9.2 APPROXIMATION OF IIR DIGITAL FILTERS FROM ANALOG FILTERS EXAMPLE 9.1 1 Step II. S S = V\" Rm 9.2.3.1 Derivations of Formula for Bilinear Transformation Method У (nTB)- У (nTs - Ts) = —[s(nTs- Ts) + s(nTs)] 2 Ts к z +1J 9.2.3.2 Properties of Mapping of Bilinear Transformation 2 ( z -1 ^ s = I I ) + w2 Case III: (2/Ts + s ) . . _ . , (0T \' I 2 J 9.2.3.3 Warping Effect 9.2.3.4 Influence of the Warping Effect on the Amplitude Response of a Digital Filter 9.2.3.5 Influence of the Warping Effect on the Phase Response of a Derived Digital Filter EXAMPLE 9.2 1 1 s EXAMPLE 9.3 Cs v CsJ + of h ( nTs) = Z |j EXAMPLE 9.4 ( z — 1 ^ I — 1 + 0.1 I z +1) I 1 + 0.1 I z +1) s = I I T I z +1J ( T j 1 + | ~ 15 < T j 1 + (T J) (s + jQ) z = (T ^ T ^ fQTл =1 2 JI 2 > ( AA ‘ + B2) + jB( A + A ‘) B2 - B2 - B2 C= D= , ^1T 1 +-^-s- EXAMPLE 9.6 o=^3 1 + I -x- (9)2 +(^/3)2 \\ 84 I 7 I (s +1)2 (s2 + s +1) 4l 1 +1 Ml 1^ + 4l 1 +1 ^ 1 +1) J [ ^ z +1 )^ z +1) к 2 J I 2 J Pole Locations for Chebyshev Filters r = 1 ( M1 n - M -1/ n ^ R = 1 1 I 2 J EXAMPLE 9.7 R = = I 2 ) L 2 J = - P1 X - P 2 X - P 2 (S - P1 )(S - P2 )(S - P2*) — 1 1 2. Design using Bilinear Transformation Method Q = 2 tan | w2 | = 2 tan | — x — p | = 0.65 Q2 = 2tan| w2- | = 2tan| — x — p | = 1.02 ( z -1 YI2 Г ( z -1 ^1 - I z +1) H ( ep1) = H ( e 02p ) = 0.9421-164° ECN [Ji j 1 + ECN IO j = ^7^^ d •• l--Q c i+e 2 CN f l J E= N= 9.3 FREQUENCY TRANSFORMATION s >Q s(O2 -QJ H(s) = Hp fo/2 +^^^ (O2 -Al) s >O C /4 ( s (О2-О,)С H (s) = H I О- -M 1 I EXAMPLE 9.8 CI s J EXAMPLE 9.9 Q C QC s + Q C Q C QC C C +Q C QCs + (s + QC ) = s + QC \' = 1 f ( e - w )| Transformation Design Parameters A= z 2 - A1 z 1 + A 2 EXERCISES s = — I I Ts I z +1J NUMERICAL EXERCISES 10 10.1 INTRODUCTION 10.2 PROPERTIES OF FIR DIGITAL FILTERS ф(а} = -та = tan IA J ^h(nTs)sin(aT - anTs) = 0 0(0) = ^ h ( nTs) sin(aT - anTs) S h(mTs ) + £ /г(пТ5)е^и[(^1)/21т\' j27i(nTs)[e->[f(^1)/2)’\"ffi ®\\ n |T 10.3 DESIGN OF FIR DIGITAL FILTERS USING FOURIER SERIES METHOD h (nTs )=_L j h (eaT) e^da ( N -1 ^ ( N -1 ^ I —-— l> n >1 —-— I Ways to reduce Gibb’s oscillations 10.3.2.1. Rectangular Window Function w ( nTs )=< —-— I < n <1 —-— Spectrum of Rectangular Window Function M= I e s - s I I 2j J 10.3.2.2. Hann and Hamming Window Functions a + (1 - a)cos , for-I l< n <1- < N -1 ^ 2 J ^ = awR (nTs) + (1 - a) (nT ) = awR (nT ) + N 1-O- J(A-1) nwR (nT ) +N 12a 1( A)-nwR (nTs) f 12Г^( A-1) wR (nTs) к 2 у WH (e- ) = aW, (e-) + ^W, (ej■\"-1)\"■ ) WH(e ) 2n A N । 1 - a A +1 I I 2 J . 2 n 2n A 1 wT + I— 10.3.2.3. Blackman Window Function 2 ) I 2 ) EXAMPLE 10.1 h I I + 2 > h I - n I cos naT I 2 J nS I 2 1 ’ Delay = т = ^ j T = ^ | T, = 3 T h I I + 2 > h I - n I cos na nn nn 3n 2n n 10.3.2.4. Kaiser Window Function wk (nTs ) = < I < n <1 4 t | Ъ J a 2a 2a 1 - Y H (ejT) = < \" <|a|< \'2 aC = Op + aa D= EXAMPLE 10.2 2n nn nn N > ^D +1 f F0.W f„. ( N - 1 U.,f N - 11 10.4 DESIGN OF FIR DIGITAL FILTER BASED ON NUMERICAL-ANALYSIS FORMULAE Gregory-Newton Forward Difference Formula Gregory-Newton Backward Difference Formula 1 + 8 2 + - m Г f _ T 4 Г _ T 4 +— 8s I nT —- I + 8s I nT —s- I m ( m2 -1) ( m2 + 85sI nT + - ) ) f f T 4 f f T f T 4 8s I nTs + \"2“ 1 = s (nTs + Ts )- s (nTs ) = d\'S (nTs + mTs ) y(nTs) = EXAMPLE 10.3 y(nTs) = — 1) ( m2 2(Z5) + d I nT = 71- < T 4 .( ds I nT I + d I nT s- I + d3s I nT + - . I T + d I nT 1 t f T 4 t f T 4 + d5sI nT —- | + d5sI nT +■— I T A 8s I nTs +T 1 = s (nTs + Ts )- s (nTs ) N 2 7 TA N 2 7 .( _ T A Г _ T A 3s \\nTs + Ф +83s\\nTs -TH = s(nTs + Ts)-s( 8 8s I nT + 7T ( t t A Г t t s I nT + T + — I — s I nT + T + — Г t AT sI nTs — Ts + I — sI nTs N 2 7 N Г _ 3 T A Г _ T s | nT + I — s | nT + - Г _ T A Г _ 3 T —s | nT + - I — s | nT + - „ Г T A „ Г T s| nT + | — s| nT + L t A Г s- I + s I nT „з Г t A „з Г t 83s| nT + - I + 83s| nT — - 3 T A . Г T A . Г + | — 8s| nT + L I — 8s| nT 2 7 N s 2) N s + 8s I nTs +^T [ s ( nTs + 3 Ts) — 4 s ( nTs + 2 Ts) + 5 s ( nTs + Ts) — 5 s ( nTs — Ts) or y (nTs ) = 601t [ s (nTs + 3 Ts) — 9 s ( nTs + 2 Ts) + 45 s ( nTs + Ts) 10.5 DESIGN OF OPTIMAL LINEAR-PHASE FIR DIGITAL FILTERS USING M-CLELLAN-PARKS METHOD f Ss к Л 10.6 FINITE WORD LENGTH EFFECTS IN DIGITAL FILTERS H (z) = — z-a z - a IM <£ I ■ j Requirements for low coefficient sensitivity Reduction of Product Round-off Error Granular Limit Cycles Overflow Limit Cycles EXERCISES NUMERICAL EXERCISES a < a < a 0, ac <|a|< a a = E 13.15 A COMPUTER VOICE RESPONSE SYSTEM EXERCISES 14 14.1 INTRODUCTION 14.2 APPLICATIONS AND ADVANTAGES OF RADARS Advantages of Using Radar 14.3 LIMITATIONS OF USING RADAR 14.4 CHIRP z -TRANSFORM (CZT) ALGORITHM S (zk ) = £ s(n) [AW-k ] n nk = ~[ n2 + k2 —( k — n )2 ] (14.7) EXAMPLE 14.1 14.5 RADAR SYSTEM AND RADAR PARAMETERS , „ , vT , 2 14.6 RADAR SIGNAL DESIGN AND AMBIGUITY FUNCTIONS = £ S J 5 ( nTs + Т ) s *( nT ) s *( mTs + T ) s ( mTs ) n=-X m=-X -X 14.7 AMBIGUITY FUNCTIONS OF CHIRPS AND SINUSOIDAL PULSES Z ,< “ I n 1 “I n 1 14.8 AMBIGUITY FUNCTION OF A CW PULSE 14.9 AMBIGUITY FUNCTIONS OF A BURST 14.10 OTHER SIGNALS 2v T 14.11 AIRBORNE SURVEILLANCE RADAR FOR AIR TRAFFIC CONTROL (ATC) 14.12 LONG-RANGE DEMONSTRATION RADAR (LRDR) 14.13 DIGITAL MATCHED FILTER FOR A HIGH-PERFORMANCE RADAR (HPR) \\ 2 J \\ 2 J EXAMPLE 14.2 EXERCISES A C D E F G H I L M N P R S T U V Z