دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [1 ed.] نویسندگان: Alan V. Oppenheim, Ronald W. Schafer سری: ISBN (شابک) : 0132146355, 9780132146357 ناشر: Prentice-Hall سال نشر: 1975 تعداد صفحات: 585 [600] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 43 Mb
در صورت تبدیل فایل کتاب Digital Signal Processing به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب پردازش سیگنال دیجیتال نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تجزیه و تحلیل و نمایش سیگنالها و سیستمهای زمان گسسته، از جمله پیچیدگی زمان گسسته، معادلات اختلاف، تبدیل z و تبدیل فوریه گسسته زمان را پوشش میدهد. تاکید بر شباهت ها و تمایز بین سیگنال ها و سیستم های زمان گسسته و زمان پیوسته است. همچنین ساختارهای شبکه دیجیتال را برای پیاده سازی فیلترهای دیجیتال بازگشتی (پاسخ ضربه نامحدود) و غیر بازگشتی (پاسخ تکانه محدود) با چهار کاست ویدئویی که به طراحی فیلتر دیجیتال برای فیلترهای بازگشتی و غیر بازگشتی اختصاص داده شده است، پوشش می دهد. با بحث در مورد الگوریتم تبدیل فوریه سریع برای محاسبه تبدیل فوریه گسسته به پایان می رسد.
Covers the analysis and representation of discrete-time signals and systems, including discrete-time convolution, difference equations, the z-transform, and the discrete-time Fourier transform. Emphasis is placed on the similarities and distinctions between discrete-time and continuous-time signals and systems. Also covers digital network structures for implementation fo both recursive (infinite impulse response) and nonrecursive (finite impulse response) digital filters with four videocassettes devoted to digital filter design for recursive and nonrecursive filters. Concludes with a discussion of the fast Fourier transform algorithm for computation of the discrete Fourier transform.
PREFACE .................................................................................... xi INTRODUCTION ............................................................................... 1 1 DISCRETE-TIME SIGNALS AND SYSTEMS ........................................................ 6 1.0 Introduction ........................................................................... 6 1.1 Discrete-Time Signals-Sequences ........................................................ 8 1.2 Linear Shift-Invariant Systems ......................................................... 11 1.3 Stability and Causality ................................................................ 13 1.4 Linear Constant-Coefficient Difference Equations ....................................... 16 1.5 Frequency-Domain Representation of Discrete-Time Systems and Signals ................... 18 1.6 Some Symmetry Properties of the Fourier Transform ...................................... 24 1.7 Sampling of Continuous-Time Signals .................................................... 26 1.8 Two-Dimensional Sequences and Systems .................................................. 30 Summary .................................................................................... 34 Problems ................................................................................... 35 2 THE Z-TRANSFORM .......................................................................... 45 2.0 Introduction ........................................................................... 45 2.1 z-Transform ............................................................................ 45 2.2 Inverse z-Transform .................................................................... 52 2.3 z-Transform Theorems and Properties .................................................... 58 2.4 System Function ........................................................................ 67 2.5 Two-Dimensional Z-Transform ............................................................ 73 Summary .................................................................................... 77 Problems ................................................................................... 78 3 THE DISCRETE FOURIER TRANSFORM ........................................................... 87 3.0 Introduction ........................................................................... 87 3.1 Representation of Periodic Sequences-The Discrete Fourier Series ....................... 88 3.2 Properties of the Discrete Fourier Series .............................................. 91 3.3 Summary of Properties of the DFS Representation of Periodic Sequences .................. 95 3.4 Sampling the z-Transform ............................................................... 96 3.5 Fourier Representation of Finite-Duration Sequences - The Discrete Fourier Transform ... 99 3.6 Properties of the Discrete Fourier Transform ........................................... 101 3.7 Summary of Properties of the Discrete Fourier Transform ................................ 110 3.8 Linear Convolution Using the Discrete Fourier Transform ................................ 110 3.9 Two-Dimensional Discrete Fourier Transform ............................................. 115 Summary .................................................................................... 121 Problems ................................................................................... 121 4 FLOW GRAPH AND MATRIX REPRESENTATION OF DIGITAL FILTERS .................................. 136 4.0 Introduction ........................................................................... 136 4.1 Signal Flow Graph Representation of Digital Networks ................................... 137 4.2 Matrix Representation of Digital Networks .............................................. 143 4.3 Basic Network Structures for HR Systems ................................................ 148 4.4 Transposed Forms ....................................................................... 153 4.5 Basic Network Structures for FIR Systems ............................................... 155 4.6 Parameter Quantization Effects ......................................................... 165 4.7 Tellegen's Theorem for Digital Filters and Its Applications ............................ 173 Summary .................................................................................... 181 Problems ................................................................................... 182 5 DIGITAL FILTER DESIGN TECHNIQUES ......................................................... 195 5.0 Introduction ........................................................................... 195 5.1 Design of HR Digital Filters from Analog Filters ....................................... 197 5.2 Design Examples: Analog-Digital Transformation ......................................... 211 5.3 Computer-Aided Design of HR Digital Filters ............................................ 230 5.4 Properties of FIR Digital Filters ...................................................... 237 5.5 Design of FIR Filters Using Windows .................................................... 239 5.6 Computer-Aided Design of FIR Filters ................................................... 250 5.7 A Comparison of HR and FIR Digital Filters ............................................. 268 Summary .................................................................................... 269 Problems ................................................................................... 271 6 COMPUTATION OF THE DISCRETE FOURIER TRANSFORM ............................................ 284 6.0 Introduction ........................................................................... 284 6.1 Goertzel Algorithm ..................................................................... 287 6.2 Decimation-in-Time FFT Algorithms ...................................................... 291 6.3 Decimation-in-Frequency FFT Algorithms ................................................. 302 6.4 FFT Algorithms for N a Composite Number ................................................ 307 6.5 General Computational Considerations in FFT Algorithms ................................. 315 6.6 Chirp Z-Transform Algorithm ............................................................ 321 Summary .................................................................................... 326 Problems ................................................................................... 328 7 DISCRETE HILBERT TRANSFORMS .............................................................. 337 7.0 Introduction ........................................................................... 337 7.1 Real- and Imaginary-part Sufficiency for Causal Sequences .............................. 339 7.2 Minimum-Phase Condition ................................................................ 345 7.3 Hilbert Transform Relations for the DFT ................................................ 353 7.4 Hilbert Transform Relations for Complex Sequences ...................................... 358 Summary .................................................................................... 365 Problems ................................................................................... 367 8 DISCRETE RANDOM SIGNALS .................................................................. 376 8.0 Introduction ........................................................................... 376 8.1 A Discrete-Time Random Process ......................................................... 377 8.2 Averages ............................................................................... 382 8.3 Spectrum Representations of Infinite-Energy Signals .................................... 388 8.4 Response of Linear Systems to Random Signals ........................................... 391 Summary .................................................................................... 395 Problems ................................................................................... 395 9 EFFECTS OF FINITE REGISTER LENGTH IN DIGITAL SIGNAL PROCESSING ........................... 404 9.0 Introduction ........................................................................... 404 9.1 Effect of Number Representation on Quantization ........................................ 406 9.2 Quantization in Sampling Analog Signals ................................................ 413 9.3 Finite-Register-Length Effects in Realizations of IIR Digital Filters .................. 418 9.4 Finite-Register-Length Effects in Realizations of FIR Digital Filters .................. 438 9.5 Effects of Finite Register Length in Discrete Fourier Transform Computations ........... 444 Summary .................................................................................... 462 Problems ................................................................................... 464 10 HOMOMORPHIC SIGNAL PROCESSING ........................................................... 480 10.0 Introduction .......................................................................... 480 10.1 Generalized Superposition ............................................................. 481 10.2 Multiplicative Homomorphic System ..................................................... 484 10.3 Homomorphic Image Processing .......................................................... 487 10.4 Homomorphic Systems for Convolution ................................................... 490 10.5 Properties of the Complex Cepstrum .................................................... 500 10.6 Computational Realizations of the Characteristic System D* ............................ 507 10.7 Applications of Homomorphic Deconvolution ............................................. 511 Summary .................................................................................... 527 Problems ................................................................................... 529 11 POWER SPECTRUM ESTIMATION ............................................................... 532 11.0 Introduction .......................................................................... 532 11.1 Basic Principles of Estimation Theory ................................................. 533 11.2 Estimates of the Autocovariance ....................................................... 539 11.3 The Periodogram as an Estimate of the Power Spectrum .................................. 541 11.4 Smoothed Spectrum Estimators .......................................................... 548 11.5 Estimates of the Cross Covariance and Cross Spectrum .................................. 554 11.6 Application of the FFT in Spectrum Estimation ......................................... 555 11.7 Example of Spectrum Estimation ........................................................ 562 Summary .................................................................................... 571 Problems ................................................................................... 571 INDEX ...................................................................................... 577