دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Mahmoud Hassaballah (editor)
سری:
ISBN (شابک) : 0128194383, 9780128194386
ناشر: Academic Press
سال نشر: 2020
تعداد صفحات: 376
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 29 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Digital Media Steganography: Principles, Algorithms, and Advances به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب استگانوگرافی رسانه های دیجیتال: اصول، الگوریتم ها و پیشرفت ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
استفاده متداول از اینترنت و سرویس های ابری در انتقال حجم زیادی از داده ها از طریق شبکه های باز و کانال های ناامن، آن داده های خصوصی و مخفی را در معرض موقعیت های جدی قرار می دهد. اطمینان از ایمن و ایمن بودن انتقال اطلاعات از طریق اینترنت بسیار مهم شده است، در نتیجه امنیت اطلاعات به دلیل افزایش انتقال داده ها از طریق شبکه های اجتماعی به یکی از مهم ترین مسائل جوامع انسانی تبدیل شده است. Steganography رسانه های دیجیتال: اصول، الگوریتم ها و پیشرفت هاتئوری ها و الگوریتم های اساسی برای طراحی عملی را پوشش می دهد، در حالی که یک نمای کلی از پیشرفته ترین روش ها و تکنیک های مدرن در زمینه استگانوگرافی ارائه می دهد. موضوعات تحت پوشش مجموعه ای از آثار تحقیقاتی با کیفیت بالا را ارائه می دهد که به روشی ساده توسط رهبران مشهور جهان در زمینه ای که با مشکلات تحقیقاتی خاص سروکار دارند نوشته شده است. این آخرین هنر و همچنین جدیدترین روندها در استگانوگرافی رسانه های دیجیتال را ارائه می دهد.
The common use of the Internet and cloud services in transmission of large amounts of data over open networks and insecure channels, exposes that private and secret data to serious situations. Ensuring the information transmission over the Internet is safe and secure has become crucial, consequently information security has become one of the most important issues of human communities because of increased data transmission over social networks. Digital Media Steganography: Principles, Algorithms, and Advances covers fundamental theories and algorithms for practical design, while providing a comprehensive overview of the most advanced methodologies and modern techniques in the field of steganography. The topics covered present a collection of high-quality research works written in a simple manner by world-renowned leaders in the field dealing with specific research problems. It presents the state-of-the-art as well as the most recent trends in digital media steganography.
Cover Digital Media Steganography: Principles, Algorithms, and Advances Copyright Contents List of contributors About the editor Preface Acknowledgments 1 Introduction to digital image steganography 1.1 Introduction 1.2 Applications of steganography 1.3 Challenges facing steganography 1.4 Steganographic approaches 1.4.1 Spread spectrum approaches 1.4.2 Spatial domain approaches 1.4.2.1 Gray level modification 1.4.2.2 Pixel value differencing (PVD) 1.4.2.3 Least significant bit substitution (LSB) 1.4.2.4 Exploiting modification direction (EMD) 1.4.2.5 Quantization-based approaches 1.4.2.6 Multiple bit-planes-based approaches 1.4.3 Adaptive-based approaches 1.4.4 Transform domain approaches 1.5 Performance evaluation 1.5.1 Payload capacity 1.5.2 Visual stego image quality analysis 1.5.3 Security analysis 1.5.3.1 Pixel difference histogram analysis 1.5.3.2 Universal steganalysis 1.5.3.3 Regular and singular steganalysis 1.6 Conclusion References 2 A color image steganography method based on ADPVD and HOG techniques 2.1 Introduction 2.2 Review of the ADPVD method 2.3 The pixel-based adaptive directional PVD steganography 2.3.1 Histogram of oriented gradients 2.3.2 Pixel-of-interest (POI) 2.3.3 Embedding algorithm 2.3.4 Extraction algorithm 2.4 Results and discussion 2.4.1 Embedding direction analysis using HOG 2.4.2 Embedding direction analysis using POI 2.4.3 Impact of threshold value on POI 2.4.4 Impact of threshold on capacity and visual quality 2.4.5 Visual quality analysis 2.4.6 Comparison with other adaptive PVD-based methods 2.4.7 Comparison with color image-based methods 2.4.8 Comparison with edge-based methods 2.4.9 Security against pixel difference histogram analysis 2.4.10 Security against statistical RS-steganalysis 2.5 Conclusion References 3 An improved method for high hiding capacity based on LSB and PVD 3.1 Introduction 3.2 Related work 3.2.1 Pixel value differencing (PVD) steganography [13] 3.2.1.1 The PVD embedding procedure 3.2.1.2 The PVD extraction steps 3.2.1.3 Illustration of the PVD method 3.2.2 Khodaei et al.'s method [20] 3.2.2.1 An illustration of incorrect data extraction in Khodaei et al.'s method 3.2.3 Jung's method [15] 3.2.3.1 Embedding algorithm 3.2.3.2 Extraction algorithm 3.2.3.3 FOBP in Jung's method 3.2.3.4 Extraction problem in Jung's method 3.3 The proposed method 3.3.1 Embedding procedure Case 1: Pixel shifting process for overflow condition Case 2: Pixel shifting process for underflow condition 3.3.2 Extraction procedure 3.3.3 Example of the proposed method 3.3.3.1 Embedding side 3.3.3.2 Extraction side 3.4 Results and discussion 3.4.1 Analysis of PSNR, capacity, BPP, FOBP, and SSIM 3.4.2 Security check using RS analysis 3.4.3 Security check using Pixel Difference Histogram (PDH) analysis 3.5 Conclusion References 4 An efficient image steganography method using multiobjective differential evolution 4.1 Introduction 4.2 Literature review 4.3 Background 4.3.1 LSB substitution method 4.3.2 Differential evolution 4.4 The proposed method 4.4.1 Embedding process 4.4.2 Extraction process 4.5 Experimental results 4.5.1 Peak signal-to-noise ratio 4.5.2 Structural similarity index measure 4.5.3 Bit error rate 4.6 Conclusion References 5 Image steganography using add-sub based QVD and side match 5.1 Introduction 5.2 Proposed ASQVD+SM technique 5.2.1 The embedding procedure 5.2.2 Extraction procedure 5.2.3 Example of embedding and extraction 5.3 Experimental analysis 5.4 Conclusion References 6 A high-capacity invertible steganography method for stereo image 6.1 Introduction 6.2 Preliminaries 6.2.1 Discrete cosine transforms (DCT) and quantized DCT (QDCT) 6.2.2 Yang and Chen's method 6.3 The proposed method 6.3.1 Generation of the embedding direction histogram (EDH) 6.3.2 Stereo image embedding algorithm 6.3.2.1 Similar block searching 6.3.2.2 Based-2-D histogram shifting with EDH data embedding 6.3.2.3 Example of embedding 6.3.3 Information extracting and stereo image recovering algorithm 6.3.4 Evaluation metrics 6.4 Experimental results 6.5 Conclusion Acknowledgment References 7 An adaptive and clustering-based steganographic method: OSteg 7.1 Introduction 7.2 Related works 7.3 OSteg embedding 7.3.1 Preparation 7.3.2 Otsu clustering 7.3.3 Pretreatment: fake embedding 7.3.4 Scrambling selection: Ikeda system 7.3.5 Secret shared key and key space 7.3.6 Effective embedding 7.4 Experimental results and discussion 7.5 Conclusion Acknowledgments References 8 A steganography method based on decomposition of the Catalan numbers 8.1 Introduction 8.2 Related works 8.3 Decomposition of Catalan numbers 8.4 Implementation of the proposed method Module for embedded data Module for extract data 8.5 Steganalysis and security testing Security analysis of stego key Steganalysis of the proposed method 8.6 Conclusion References 9 A steganography approach for hiding privacy in video surveillance systems 9.1 Introduction 9.2 Related works 9.3 Hiding privacy information using video compression concept 9.3.1 Background model generator 9.3.2 Deidentification private details 9.3.3 H.264 compression preprocessing 9.3.4 The proposed quantization hiding technique 9.3.5 The extraction module 9.4 Experimental results 9.4.1 Data payload 9.4.2 Invisibility performance Conclusion References 10 Reversible steganography techniques: A survey 10.1 Introduction 10.1.1 Reversible Steganography Scheme (RSS) 10.1.2 Measurements of RSS 10.1.3 Categories of RSS 10.2 Difference Expansion (DE) schemes 10.2.1 Embedding procedure of Tian's method 10.2.2 Extraction procedure of Tian's method 10.2.3 Embedding procedure of Alattar's method 10.2.4 Extraction procedure of Alattar's method 10.2.5 Recovery procedure of Alattar's method 10.3 Histogram-Shifting (HS) schemes 10.3.1 Embedding procedure of HS 10.3.2 Extraction and recovery procedures of HS 10.3.3 Extra information of HS 10.3.4 Experimental results of HS 10.4 Pixel-Value-Ordering (PVO) schemes 10.4.1 Embedding procedure of PVO 10.4.2 Embedding procedure of IPVO 10.4.3 Experimental results of PVO-based schemes 10.5 Dual-image-based schemes 10.5.1 Center-folding strategy 10.5.2 Experimental results of dual-based RSS 10.6 Interpolation-based schemes 10.6.1 Embedding procedure of NMI 10.6.2 Extraction procedure of NMI 10.6.3 Comparison results 10.7 Conclusion Acknowledgments References 11 Quantum steganography 11.1 Introduction 11.1.1 The idea of steganography 11.1.2 Quantum error-correcting codes 11.2 Goals and tools of quantum steganography 11.3 Quantum steganography with depolarizing noise 11.3.1 The depolarizing channel 11.3.2 A local steganographic encoding 11.3.3 Key usage 11.3.4 Weaknesses of the local encoding 11.4 Steganographic encoding in error syndromes 11.4.1 The encoding and decoding procedure 11.4.2 Communication and key usage rates 11.5 Encoding in the binary symmetric channel 11.6 Encoding in the 5-qubit "perfect" code 11.6.1 Encoding with one-qubit errors 11.6.2 Two error encodings 11.6.3 Rate of secret qubit transmission 11.6.4 Comparison to encoding across blocks Steganographic communication rate Key usage rate 11.7 Secrecy and security 11.7.1 Diamond norm distance for the binary symmetric channel 11.7.2 Diamond norm distance for the depolarizing channel 11.7.3 Conditions for secrecy 11.7.4 Secret key vs. shared entanglement 11.8 Asymptotic rates in the noiseless case 11.8.1 Direct coding theorem (achievability) The binary symmetric channel The depolarizing channel Random unitary channels General channels Secret key consumption 11.8.2 Converse theorem (upper bound) Upper bound on steganographic rate 11.9 Asymptotic rates in the noisy case 11.9.1 Direct coding in the noisy case Achievable rate for the BSC Secret key consumption Depolarizing channel General channels 11.9.2 Converse theorem in the noisy case Upper bound on steganographic rate 11.10 Discussion and future directions 11.11 Conclusion Acknowledgments References 12 Digital media steganalysis 12.1 Introduction 12.2 Image steganalysis 12.2.1 Signature steganalysis 12.2.2 Statistical steganalysis 12.2.3 Deep learning applied to steganalysis of digital images 12.2.4 Summary and perspectives 12.3 Audio steganalysis 12.3.1 Methods 12.3.1.1 Noncompressed audio formats 12.3.1.2 Compressed audio formats 12.3.1.3 Modern audio steganalysis 12.3.2 Summary and perspectives 12.4 Video steganalysis 12.4.1 General context 12.4.2 Previous methods 12.4.3 Recent method 12.4.4 Summary and perspectives 12.5 Text steganalysis 12.5.1 Methods 12.5.1.1 Statistical algorithms 12.5.1.2 Modern text steganalysis 12.5.2 Summary and perspectives 12.6 Conclusion References 13 Unsupervised steganographer identification via clustering and outlier detection 13.1 Introduction 13.2 Primary concepts and techniques 13.2.1 JPEG compression 13.2.2 JPEG steganalysis features 13.2.2.1 PEV-274 features 13.2.2.2 LI-250 features 13.2.3 Batch steganography and pooled steganalysis 13.2.4 Agglomerative clustering 13.2.5 Local outlier factor 13.2.6 Maximum mean discrepancy 13.3 General frameworks 13.3.1 Clustering-based detection 13.3.2 Outlier-based detection 13.3.3 Performance evaluation and analysis 13.3.3.1 Clustering-based detection 13.3.3.2 Outlier-based detection 13.4 Ensemble and dimensionality reduction 13.4.1 Clustering ensemble 13.4.2 Dimensionality reduction 13.4.2.1 Feature selection 13.4.2.2 Feature projection 13.5 Conclusion Acknowledgment References 14 Deep learning in steganography and steganalysis 14.1 Introduction 14.2 The building blocks of a deep neuronal network 14.2.1 Global view of a Convolutional Neural Network 14.2.2 The preprocessing module 14.2.3 The convolution module 14.2.4 The classification module 14.3 The different networks used over the period 2015-2018 14.3.1 The spatial steganalysis Not-Side-Channel-Aware (Not-SCA) 14.3.2 The spatial steganalysis Side-Channel-Informed (SCA) 14.3.3 The JPEG steganalysis 14.3.4 Discussion about the Mismatch phenomenon scenario 14.4 Steganography by deep learning 14.4.1 The family by synthesis 14.4.2 The family by generation of the modifications probability map 14.4.3 The family by adversarial-embedding iterated (approaches misleading a discriminant) 14.4.4 The family by 3-player game 14.5 Conclusion References Index Back Cover