دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Alfred M. Bruckstein (auth.), Valentin E. Brimkov, Reneta P. Barneva (eds.) سری: Lecture Notes in Computational Vision and Biomechanics 2 ISBN (شابک) : 9789400741744, 9789400741737 ناشر: Springer Netherlands سال نشر: 2012 تعداد صفحات: 427 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
کلمات کلیدی مربوط به کتاب الگوریتم های هندسه دیجیتال: مبانی نظری و برنامه های کاربردی برای تصویربرداری محاسباتی: پردازش سیگنال، تصویر و گفتار، تصویربرداری کامپیوتری، بینایی، تشخیص الگو و گرافیک، الگوریتمها، ریاضیات کاربردی/روشهای محاسباتی مهندسی، هندسه محدب و گسسته
در صورت تبدیل فایل کتاب Digital Geometry Algorithms: Theoretical Foundations and Applications to Computational Imaging به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب الگوریتم های هندسه دیجیتال: مبانی نظری و برنامه های کاربردی برای تصویربرداری محاسباتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
هندسه دیجیتال به عنوان یک رشته مستقل در نیمه دوم قرن گذشته ظهور کرد. این با خواص هندسی اشیاء دیجیتال سروکار دارد و با هدف روشن توسعه یافته است تا مبانی نظری دقیقی برای ابداع رویکردها و الگوریتمهای پیشرفته جدید برای مسائل مختلف محاسبات بصری فراهم کند. جنبه های مختلف هندسه دیجیتال در ادبیات مورد توجه قرار گرفته است. این کتاب اولین کتابی است که به صراحت بر ارائه مهم ترین الگوریتم های هندسه دیجیتال تمرکز دارد. هر فصل یک بررسی مختصر در مورد یک حوزه تحقیقاتی اصلی مرتبط با موضوع حجم کلی، توصیف و تحلیل الگوریتمهای بنیادی مرتبط، و همچنین مشارکتهای اصلی جدید توسط نویسندگان ارائه میکند. هر فصل شامل بخشی است که در آن به مشکلات باز جالب توجه می شود.
Digital geometry emerged as an independent discipline in the second half of the last century. It deals with geometric properties of digital objects and is developed with the unambiguous goal to provide rigorous theoretical foundations for devising new advanced approaches and algorithms for various problems of visual computing. Different aspects of digital geometry have been addressed in the literature. This book is the first one that explicitly focuses on the presentation of the most important digital geometry algorithms. Each chapter provides a brief survey on a major research area related to the general volume theme, description and analysis of related fundamental algorithms, as well as new original contributions by the authors. Every chapter contains a section in which interesting open problems are addressed.
Cover Digital Geometry Algorithms Preface Contents Contributors Chapter 1: Digital Geometry in Image-Based Metrology 1.1 Introduction 1.2 The Digitization Model and the Metrology Tasks 1.3 Self Similarity of Digital Lines 1.4 Digital Straight Segments: Their Characterization and Recognition 1.5 Digital Disks, Convex and Star-Shaped Objects 1.6 Shape Designs for Good Metrology 1.7 The Importance of Being Gray 1.8 Some Further Open Questions 1.9 Concluding Remarks References Chapter 2: Provably Robust Simplification of Component Trees of Multidimensional Images 2.1 Introduction 2.2 Foreground Component Tree Structures (FCTSs) 2.3 The (lambda, k)-Simplification of a kappa-FCTS, Essential Isomorphism, and the Main Theorem 2.4 Pruning by Removing Branches of Length <=lambda 2.4.1 Specification of Simplification Step 2 2.4.2 An Easily Visualized Characterization of the Output of Simplification Step 2 2.4.3 Linear-Time Implementation of Simplification Step 2 2.5 Elimination of Internal Edges of Length <=lambda from Fcrit 2.5.1 Specification of Simplification Step 3 2.5.2 Implementation of Simplification Step 3 2.6 Demonstration of Potential Biological Applicability 2.7 Possibilities for Future Work 2.7.1 How Can Our Simplification Method and Theorem 1 Be Adapted to Contour Trees? 2.7.2 Does the Bottleneck Stability Theorem Have an Analog for FCTSs That Implies Theorem 1? 2.7.3 Can Images Be Simplified Using Variants of Our Method? 2.8 Conclusion Appendix A: Some Properties of Simplification Steps 2 and 3, and a Proof of the Correctness of Algorithm 1 A.1 Properties of Simplification Step 2 A.2 Properties of Simplification Step 3 A.3 Justification of Algorithm 1 Appendix B: A Constructive Proof of Theorem 1 B.1 Step 1 of the Proof of the Fundamental Lemma B.2 Some Useful Observations B.3 Step 2 of the Proof of the Fundamental Lemma B.4 Step 3 of the Proof of the Fundamental Lemma Appendix C: Justification of Assertions L, M, N, and O in Step 3 of the Proof of the Fundamental Lemma C.1 Proof of Assertion L C.2 Proof of Assertion M C.3 Proof of Assertion N C.4 Proof of Assertion O References Chapter 3: Discrete Topological Transformations for Image Processing 3.1 Introduction 3.2 Topological Transformations of Binary Images 3.2.1 Neighborhoods, Connectedness 3.2.2 Connectivity Numbers 3.2.3 Topological Classification of Object Points 3.2.4 Topology-Preserving Transformations 3.2.5 Transformations Guided by a Priority Function 3.2.6 Lambda-Medial Axis 3.2.7 Other Applications of Guided Thinning 3.2.8 Hole Closing 3.3 Topological Transformations for Grayscale Images 3.3.1 Cross-Section Topology 3.3.2 Local Characterizations and Topological Classification of Points 3.3.3 Topological Filtering 3.3.4 Topological Segmentation 3.3.5 Crest Restoration Based on Topology 3.4 Parallel Thinning 3.4.1 Cubical Complexes 3.4.2 Collapse and Simple Facets 3.4.3 Critical Kernels 3.4.4 Crucial Cliques and Faces 3.4.5 Parallel Thinning Algorithms 3.5 Perspectives 3.6 Conclusion References Chapter 4: Modeling and Manipulating Cell Complexes in Two, Three and Higher Dimensions 4.1 Introduction 4.2 Background Notions 4.3 Data Structures for Cell Complexes: An Overview 4.4 Dimension-Independent Data Structures 4.5 Data Structures for Two-Dimensional Cell Complexes 4.5.1 Representing Manifold 2-Complexes 4.5.2 Representing Non-manifold 2-Complexes 4.6 Data Structures for Three-Dimensional Cell Complexes 4.7 Manipulation Operators on Cell Complexes: An Overview 4.7.1 Collapse Operators on Simplicial Complexes 4.7.2 Stellar Operators 4.7.3 Handle Operators 4.8 Euler Operators on Cell Complexes: An Overview 4.8.1 Euler-Poincaré Formula for Cell Complexes 4.8.2 Euler-Poincaré Formula for General Complexes 4.8.3 Classification of Euler Operators 4.8.4 MEV, MEF and MEKR Operators 4.9 Euler Operators on Manifolds 4.9.1 Euler Operators on Manifold 2-Complexes Bounding a Solid (Boundary Representations) 4.9.2 Splice Operator 4.10 Euler Operators on Non-manifolds 4.10.1 Euler Operators for 2-Complexes 4.10.2 Euler Operators on 3-Complexes 4.11 Discussion References Chapter 5: Binarization of Gray-Level Images Based on Skeleton Region Growing 5.1 Introduction 5.2 Skeleton Strength Map (SSM) 5.2.1 Computation of the Skeleton Strength Map 5.2.2 Comparison Between SSM and Distance Transform 5.3 Skeletonization of Binary Images 5.3.1 Local Maxima Detection 5.3.2 Local Maxima Connection 5.4 Skeletonization of Gray-Scale Images 5.4.1 Noise Smoothing of Boundaries 5.4.2 Computation of SSM from Gray-Scale Images 5.4.3 Robustness Under Boundary Noise and Deformation 5.4.4 Results on Gray-Scale Images 5.5 Binarization of Gray-Level Images Based on Their Skeletons 5.5.1 Seeds Selection 5.5.2 Classifying Skeleton Segments into Foreground and Background 5.5.3 Dynamic Threshold Computation 5.5.4 Region Growing Algorithm 5.6 Experimental Results and Analysis 5.7 Future Work and Open Problems References Chapter 6: Topology Preserving Parallel 3D Thinning Algorithms 6.1 Introduction 6.2 Topology Preserving Parallel Reduction Operations 6.3 Variations on Parallel 3D Thinning Algorithms 6.3.1 Fully Parallel Algorithms 6.3.2 Subiteration-Based Algorithms 6.3.3 Subfield-Based Algorithms 6.4 Implementation 6.5 Results 6.6 Possible Future Works and Open Problems 6.7 Concluding Remarks References Chapter 7: Separable Distance Transformation and Its Applications 7.1 Introduction 7.2 Distance Transformation and Discrete Medial Axis Extraction 7.2.1 Distances 7.2.2 Distance Transformation 7.2.3 Reverse Distance Transformation 7.2.4 Medial Axis Extraction 7.2.5 Voronoi Diagrams and Power Diagrams 7.2.5.1 E2DT and Voronoi Diagram 7.2.5.2 REDT and Power Diagram 7.3 Extensions and Generalizations 7.3.1 Irregular Grids 7.3.1.1 E2DT Computation on I-Grids 7.3.2 Toric Domains 7.4 High Performance Computation 7.4.1 Parallel Computation 7.4.2 Out-of-Core Approaches 7.5 Discussion and Open Problems References Chapter 8: Separability and Tight Enclosure of Point Sets 8.1 Introduction 8.2 Separation Maps and Parameter Domains 8.2.1 Affine Function Spaces 8.2.2 Separation by Sign Maps 8.2.3 Domains of Functions 8.2.4 Minimal Separations 8.3 Lattice Structure of a Domain 8.3.1 Leaning Points and Surfaces 8.3.2 Lifting Map 8.3.3 Separation Extensions 8.4 Enclosure and Separation with Elemental Subsets 8.4.1 Tight Enclosure and Separation 8.4.2 Elemental Subsets 8.4.3 Tight Enclosure of Large Set 8.4.4 Tight Separation of Sets 8.5 Classification of Domains 8.5.1 Simplices 8.5.2 More Complex Domains 8.6 Concluding Remarks and Open Problems References Chapter 9: Digital Straightness, Circularity, and Their Applications to Image Analysis 9.1 Introduction 9.2 Digital Straightness 9.2.1 Properties of Digital Straightness 9.2.2 Approximate Straightness 9.2.3 Extraction of ADSS 9.2.4 Algorithm Extract-ADSS 9.3 Digital Circularity 9.3.1 Existing Works 9.3.2 Down the Top Run 9.3.2.1 Nesting the Radii 9.3.2.2 The Algorithm DCT 9.3.3 General Case 9.3.3.1 The Algorithm DCG 9.4 Polygonal Approximation 9.4.1 Approximation Criterion 9.4.1.1 Cumulative Error (Criterion C) 9.4.1.2 Maximum Error (Criterion Cmax) 9.4.2 Algorithm for Polygonal Approximation 9.4.3 Quality of Approximation 9.4.4 Experimental Results 9.5 Circular Arc Segmentation 9.5.1 Finding the Intersection Points 9.5.2 Storing the Curve Segments 9.5.3 Deviations of Chord Property 9.5.4 Verifying the Circularity 9.5.5 Combining the Arcs 9.5.6 Finalizing the Centers and Radii 9.5.7 Some Results 9.6 Future Work and Open Problems 9.7 Conclusion References Chapter 10: Shape Analysis with Geometric Primitives 10.1 Introduction 10.2 The Tangential Cover 10.2.1 Shapes as Digital Curves 10.2.2 Digital Straight Segments 10.2.3 The Tangential Cover 10.3 Generic Shape Representation 10.3.1 Shapes as Connected Components 10.3.2 alpha-Path on Connected Components 10.3.2.1 Decomposition into Branches 10.3.2.2 Ordering the Branches 10.4 Geometric Primitives 10.4.1 Blurred Straight Segments 10.4.2 Digital Circular Arcs and Annulus 10.5 The Predicate Cover 10.6 Multi-primitives Analysis 10.6.1 alpha-Blurred Straight Segments Versus alpha\'-Thick Digital Arcs 10.6.2 Building the Complete Tree 10.6.2.1 The Choice of the Starting Point 10.6.3 A Partial Tree 10.6.3.1 Our Criterion 10.6.4 Experimental Results 10.7 Future Work and Open Problems References Chapter 11: Shape from Silhouettes in Discrete Space 11.1 Introduction 11.2 Shape Reconstruction 11.2.1 Silhouettes and Support Hyperplanes 11.2.2 Reconstruction of Non-convex Objects 11.3 Mathematical Preliminaries 11.3.1 Connectivity of Pixels and Voxels 11.3.2 Discrete Linear Objects 11.3.2.1 Discrete Planar Lines 11.3.2.2 Discrete Spatial Lines 11.3.2.3 Discrete Planes 11.3.3 Discrete Polygons and Polyhedra 11.4 Shape Reconstruction in Discrete Space 11.4.1 Reconstruction of Space and Object 11.4.2 Convex Hull and Visual Hull in Discrete Space 11.4.3 Proof of Theorem 16 11.4.3.1 Two-Dimensional Case 11.4.3.2 Three-Dimensional Case 11.4.4 Non-convex Case 11.5 Examples 11.6 Discussion 11.6.1 Reconstruction of Spatial String 11.6.2 Shape Carving 11.6.3 Approximation of the Hybrid Model 11.6.4 Open Problems 11.7 Conclusions References Chapter 12: Combinatorial Maps for 2D and 3D Image Segmentation 12.1 Introduction 12.2 Topological Maps 12.2.1 Combinatorial Maps 12.2.2 Removal Operations 12.2.3 Images, Regions and Inter-elements 12.2.4 Topological Maps 12.3 Image Segmentation Algorithm 12.3.1 The Global Merging Algorithm 12.3.2 The Segmentation Algorithm 12.3.3 Different Criteria of Segmentation 12.3.3.1 Range of Gray Levels 12.3.3.2 Gradient on (n-1)-Cells 12.3.3.3 External and Internal Contrasts 12.3.3.4 Size of Regions 12.4 Betti Numbers and Topological Criteria 12.4.1 Betti Numbers 12.4.2 Computation Algorithms Using Topological Maps 12.4.2.1 Computation of Betti Numbers in 2D Image Partition 12.4.2.2 Computation of Betti Numbers in 3D Image Partition 12.4.2.3 Computation of the Second Betti Number in 3D Image Partition 12.4.3 Incremental Computation Algorithms 12.4.3.1 Incremental Computation of the Number of Cavities 12.4.3.2 Incremental Computation of the Number of Tunnels in 3D 12.4.4 Implementation of Topological Criteria in the Segmentation 12.5 Experimental Results 12.5.1 Generic Criteria 12.5.2 Constraint on Betti Numbers 12.6 Open Problems and Discussion References Chapter 13: Multigrid Convergence of Discrete Geometric Estimators 13.1 Introduction 13.2 Global Estimators 13.2.1 Multigrid Convergence for Global Estimators 13.2.2 Area and Moments 13.2.3 Perimeter and Length Estimators 13.2.4 Summary 13.3 Local Estimators 13.3.1 Multigrid Convergence for Local Estimators 13.3.2 Methodology for Experimental Evaluation 13.4 Tangent 13.4.1 Tangent Estimators 13.4.2 Experimental Evaluation 13.5 Curvature 13.5.1 Curvature Estimators 13.5.2 Experimental Evaluation 13.6 Implementation 13.7 Related Problems and Perspectives 13.7.1 Geometric Estimators Along Damaged or Noisy Contours 13.7.2 Geometric Estimators in 3D and nD 13.7.3 Current Bottlenecks and Open Problems References Index