دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 3
نویسندگان: M. Sami Fadali
سری:
ISBN (شابک) : 0128144335, 9780128144336
ناشر: Academic Press
سال نشر: 2019
تعداد صفحات: 681
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 17 مگابایت
در صورت تبدیل فایل کتاب Digital Control Engineering: Analysis and Design به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مهندسی کنترل دیجیتال: تجزیه و تحلیل و طراحی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مهندسی کنترل دیجیتال: تجزیه و تحلیل و طراحی، ویرایش سوم، اصول اساسی و کاربردهای مهندسی کنترل دیجیتال را با تأکید بر طراحی مهندسی پوشش می دهد. Fadali و Visioli تجزیه و تحلیل و طراحی سیستم های کنترل شده دیجیتالی را پوشش می دهند و کاربردهای کنترل های دیجیتال را در طیف گسترده ای از زمینه ها توصیف می کنند. این متن با مثالهای کار شده، برنامههای MATLAB در هر فصل و تکالیف پایان فصل، تئوری و عمل را برای کسانی که برای اولین بار به مهندسی کنترل دیجیتال میآیند، چه به عنوان دانشجو و چه به عنوان مهندس شاغل، ارائه میکند.
< p> از آنجایی که کنترلرها بخشی از تقریباً تمام سیستم های مدرن شخصی، صنعتی و حمل و نقل هستند، این کتاب منبع ارزشمندی است. بنابراین هر دانشجوی ارشد یا فارغ التحصیل مهندسی برق، شیمی یا مکانیک باید با تئوری پایه کنترلرهای دیجیتال آشنا باشد.Digital Control Engineering: Analysis and Design, Third Edition, covers the fundamental principles and applications of digital control engineering, with an emphasis on engineering design. Fadali and Visioli cover the analysis and design of digitally controlled systems and describe applications of digital controls in a wide range of fields. With worked examples, MATLAB applications in every chapter, and end-of-chapter assignments, this text provides both theory and practice for those coming to digital control engineering for the first time, whether as a student or practicing engineer.
As controllers are part of nearly all modern personal, industrial and transportation systems, this book is a valuable resource. Every senior or graduate student of electrical, chemical or mechanical engineering should therefore be familiar with the basic theory of digital controllers.
Digital Control Engineering Copyright Preface Approach Features Numerous examples Extensive use of CAD packages Coverage of background material Inclusion of advanced topics Standard mathematics prerequisites Senior system theory prerequisites Coverage of theory and applications New to this edition Organization of text Supporting material Acknowledgments 1 - Introduction to digital control 1.1 Why digital control? 1.2 The structure of a digital control system 1.3 Examples of digital control systems 1.3.1 Closed-loop drug delivery system 1.3.2 Computer control of an aircraft turbojet engine 1.3.3 Control of a robotic manipulator Resources Problems 2 - Discrete-time systems 2.1 Analog systems with piecewise constant inputs 2.2 Difference equations 2.3 The z-transform 2.3.1 z-transforms of standard discrete-time signals 2.3.2 Properties of the z-transform 2.3.2.1 Linearity 2.3.2.2 Time delay 2.3.2.3 Time advance 2.3.2.4 Multiplication by exponential 2.3.2.5 Complex differentiation 2.3.3 Inversion of the z-transform 2.3.3.1 Long division 2.3.3.2 Partial fraction expansion 2.3.4 The final value theorem 2.4 Computer-aided design 2.5 z-transform solution of difference equations 2.6 The time response of a discrete-time system 2.6.1 Convolution summation 2.6.2 The convolution theorem 2.7 The modified z-transform 2.8 Frequency response of discrete-time systems 2.8.1 Properties of the frequency response of discrete-time systems 2.8.2 MATLAB commands for the discrete-time frequency response 2.9 The sampling theorem 2.9.1 Selection of the sampling frequency Resources Problems Computer exercises 3 - Modeling of digital control systems 3.1 Analog-to-digital converter (ADC) model 3.2 Digital-to-analog converter (DAC) model 3.3 The transfer function of the zero-order hold (ZOH) 3.4 Effect of the sampler on the transfer function of a cascade 3.5 DAC, analog subsystem, and analog-to-digital converter (ADC) combination transfer function 3.6 Systems with transport lag 3.7 The closed-loop transfer function 3.8 Analog disturbances in a digital system 3.9 Steady-state error and error constants 3.9.1 Sampled step input 3.9.2 Sampled ramp input 3.10 MATLAB commands 3.10.1 MATLAB 3.10.2 Simulink 3.11 Sensitivity analysis 3.11.1 Pole sensitivity Further reading Problems Computer exercises. 4 - Stability of digital control systems 4.1 Definitions of stability 4.2 Stable z-domain pole locations 4.3 Stability conditions 4.3.1 Asymptotic stability 4.3.2 BIBO stability 4.3.3 Internal stability 4.4 Stability determination 4.4.1 MATLAB 4.4.2 Routh–Hurwitz criterion 4.5 Jury test 4.6 Nyquist criterion 4.6.1 Phase margin and gain margin Resources Problems Computer exercises 5 - Analog control system design 5.1 Root locus 5.2 Root locus using MATLAB 5.3 Design specifications and the effect of gain variation 5.4 Root locus design 5.4.1 Proportional control 5.4.2 Proportional-derivative (PD) control 5.4.3 Proportional-integral (PI) control 5.4.4 Proportional-integral-derivative (PID) control 5.5 Empirical tuning of PID controllers References Further reading Problems Computer exercises 6 - Digital control system design 6.1 z-domain root locus 6.2 z-domain digital control system design Observation Remarks 6.2.1 z-domain contours 6.2.2 Proportional control design in the z-domain 6.3 Digital implementation of analog controller design 6.3.1 Differencing methods Backward differencing 6.3.2 Pole-zero matching 6.3.3 Bilinear transformation 6.3.4 Empirical digital PID controller tuning 6.4 Direct z-domain digital controller design 6.5 Frequency response design 6.6 Direct control design 6.7 Finite settling time design 6.7.1 Eliminating intersample oscillation Further reading Problems Computer exercises 7 - State–space representation 7.1 State variables 7.2 State–space representation 7.2.1 State–space representation in MATLAB 7.2.2 Linear versus nonlinear state–space equations 7.3 Linearization of nonlinear state equations 7.4 The solution of linear state–space equations 7.4.1 The Leverrier algorithm 7.4.1.1 Leverrier algorithm 7.4.2 Sylvester's expansion 7.4.3 The state-transition matrix for a diagonal state matrix 7.4.3.1 Properties of constituent matrices 7.4.4 Real form for complex conjugate eigenvalues 7.5 The transfer function matrix 7.5.1 MATLAB commands 7.6 Discrete-time state–space equations 7.6.1 MATLAB commands for discrete-time state–space equations 7.6.2 Complex conjugate eigenvalues 7.7 Solution of discrete-time state–space equations 7.7.1 z-transform solution of discrete-time state equations 7.8 z-transfer function from state–space equations 7.8.1 z-transfer function in MATLAB 7.9 Similarity transformation 7.9.1 Invariance of transfer functions and characteristic equations Reference Further reading Problems Computer exercises 8 - Properties of state–space models 8.1 Stability of state–space realizations 8.1.1 Asymptotic stability 8.1.2 Bounded-Input–Bounded-Output stability 8.2 Controllability and stabilizability 8.2.1 MATLAB commands for controllability testing 8.2.2 Controllability of systems in normal form 8.2.3 Stabilizability 8.3 Observability and detectability 8.3.1 MATLAB commands 8.3.2 Observability of systems in normal form 8.3.3 Detectability 8.4 Poles and zeros of multivariable systems 8.4.1 Poles and zeros from the transfer function matrix 8.4.2 Zeros from state–space models 8.5 State–space realizations 8.5.1 Controllable canonical realization 8.5.1.1 Systems with no input differencing 8.5.1.2 Systems with input differencing 8.5.2 Controllable form in MATLAB 8.5.3 Parallel realization 8.5.3.1 Parallel realization for multiinput-multioutput systems 8.5.4 Observable form 8.6 Duality 8.7 Hankel realization 8.8 Realizations for continuous-time systems Further reading Problems Computer exercises 9 - State feedback control 9.1 State and output feedback 9.2 Pole placement 9.2.1 Pole placement by transformation to controllable form 9.2.2 Pole placement using a matrix polynomial 9.2.3 Choice of the closed-loop eigenvalues 9.2.4 MATLAB commands for pole placement 9.2.5 Pole placement for multi-input systems 9.2.6 Pole placement by output feedback 9.3 Servo problem 9.4 Invariance of system zeros 9.5 State estimation 9.5.1 Full-order observer 9.5.2 Reduced-order observer 9.6 Observer state feedback 9.6.1 Choice of observer eigenvalues 9.7 Pole assignment using transfer functions Further reading Problems Computer exercises 10 - Optimal control 10.1 Optimization 10.1.1 Unconstrained optimization 10.1.2 Constrained optimization 10.2 Optimal control 10.3 The linear quadratic regulator 10.3.1 Free final state 10.4 Steady-state quadratic regulator 10.4.1 Output quadratic regulator 10.4.2 MATLAB solution of the steady-state regulator problem 10.4.3 Linear quadratic tracking controller 10.5 Hamiltonian system 10.5.1 Eigenstructure of the Hamiltonian matrix 10.6 Return difference equality and stability margins 10.7 Model predictive control 10.7.1 Model 10.7.2 Cost function 10.7.3 Computation of the control law 10.7.4 Constraints 10.7.5 MATLAB commands 10.8 Modification of the reference signal 10.8.1 Dynamic Matrix Control Further reading Problems Computer exercises 11 - Elements of nonlinear digital control systems 11.1 Discretization of nonlinear systems 11.1.1 Extended linearization by input redefinition 11.1.2 Extended linearization by input and state redefinition 11.1.3 Extended linearization by output differentiation 11.1.4 Extended linearization using matching conditions 11.2 Nonlinear difference equations 11.2.1 Logarithmic transformation 11.3 Equilibrium of nonlinear discrete-time systems 11.4 Lyapunov stability theory 11.4.1 Lyapunov functions 11.4.2 Stability theorems 11.4.3 Rate of convergence 11.4.4 Lyapunov stability of linear systems 11.4.5 MATLAB 11.4.6 Lyapunov's linearization method 11.4.7 Instability theorems 11.4.8 Estimation of the domain of attraction 11.5 Stability of analog systems with digital control 11.6 State–plane analysis 11.7 Discrete-time nonlinear controller design 11.7.1 Controller design using extended linearization 11.7.2 Controller design based on Lyapunov stability theory 11.8 Input–output stability and the small gain theorem 11.8.1 Absolute stability Further reading Problems Computer exercises 12 - Practical issues 12.1 Design of the hardware and software architecture 12.1.1 Software requirements 12.1.2 Selection of ADC and DAC 12.2 Choice of the sampling period 12.2.1 Antialiasing filters 12.2.2 Effects of quantization errors 12.2.3 Phase delay introduced by the zero-order hold 12.3 Controller structure 12.4 Proportional–integral–derivative control 12.4.1 Filtering the derivative action 12.4.2 Integrator windup 12.4.3 Bumpless transfer between manual and automatic mode 12.4.4 Incremental form 12.5 Sampling period switching 12.5.1 MATLAB commands 12.5.2 Dual-rate control Reference Further reading Problems Computer exercises 13 - Linear matrix inequalities 13.1 Linear matrix inequalities (LMI) from matrix equation 13.1.1 From Linear Equations to LMIs 13.2 The Schur complement 13.3 Decision variables 13.4 MATLAB LMI commands 13.4.1 LMI editor Further reading Problems I - Table of Laplace and z-transforms II Properties of the z-transform III - Review of linear algebra A.1 Matrices A.2 Equality of matrices A.3 Matrix arithmetic A.3.1 Addition and subtraction A.3.2 Transposition A.3.3 Matrix multiplication A.4 Determinant of a matrix A.5 Inverse of a matrix A.6 Trace of a matrix A.7 Rank of a matrix A.8 Eigenvalues and eigenvectors A.9 Partitioned matrix A.10 Norm of a vector A.11 Matrix norms A.12 Quadratic forms A.13 Singular value decomposition and pseudoinverses A.14 Matrix differentiation/integration A.15 Kronecker product Further reading Index A B C D E F G H I J L M N O P Q R S T U W Z