دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: هندسه و توپولوژی ویرایش: 1 نویسندگان: Manfredo Do Carmo سری: ISBN (شابک) : 9780132125895, 0132125897 ناشر: Prentice Hall سال نشر: 1976 تعداد صفحات: 511 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 22 مگابایت
در صورت تبدیل فایل کتاب Differential Geometry of Curves and Surfaces به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هندسه دیفرانسیل منحنی ها و سطوح نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مطالب به خوبی ارائه شده و آموزنده است. مشکل اصلی من با این کتاب کیفیت بسیار پایین چاپ شومیز است. اگر من این کتاب را از آمازون خریداری نکرده بودم، اولین فکر من این بود که احتمالاً یک نسخه دزدی دریایی از خارج از کشور است. تنها پس از یک ماه مطالعه (دقت)، بسیاری از صفحات در حال حاضر از بین رفته اند. جلد و محتوا به نظر می رسد که اسکن شده و دوباره چاپ شده اند (در واقع، احتمالاً دقیقاً همین اتفاق افتاده است).
The content is well-presented and instructive. My main gripe with this book is the very low quality paperback edition. Had I not purchased this book on Amazon, my first thought would be that it is probably a pirated copy from overseas. After just a month of (careful) reading, many pages already falling out. The cover and content look as if they have been scanned and re-printed (in fact, this is probably exactly what happened).
Title......Page 1
Contents......Page 3
Preface......Page 5
Some Remarks on Using this Book......Page 7
1-1 Introduction......Page 9
1-2 Parametrized Curves......Page 10
1-3 Regular Curves; Arc Length......Page 13
1-4 The Vector Product in R3......Page 19
1-5 The Local Theory of Curves Parametrized by Arc Length......Page 24
1-6 The Local Canonical Form......Page 35
1-7 Global Properties of Plane Curves......Page 38
2-1 Introduction......Page 59
2-2 Regular Surfaces; Inverse Images of Regular Values......Page 60
2-3 Change of Parameters; Differential Functions on Surfaces......Page 77
2-4 The Tangent Plane; the Differential of a Map......Page 91
2-5 The First Fundamental Form; Area......Page 100
2-6 Orientation of Surfaces......Page 110
2-7 A Characterizat;on of Compact Orientable Surfaces......Page 117
2-8 A Geometric Definition of Area......Page 122
Appendix: A Brief Review on Continuity and Differentiability......Page 126
3-1 Introduction......Page 142
3-2 The Definition of the Gauss Map and Its Fundamental Properties......Page 143
3-3 The Gauss Map in Local Coordinates......Page 161
3-4 Vector Fields......Page 183
3-5 Ruled Surfaces and Minimal Surfaces......Page 196
Appendix: Self-Adjoint Linear Maps and Quadratic Forms......Page 222
4-1 Introduction......Page 225
4-2 Isometries; Conformal Maps......Page 226
4-3 The Gauss Theorem and the Equations of Compatibility......Page 239
4-4 Parallel Transport. Geodesics......Page 246
4-5 The Gauss-Bonnet Theorem and its Applications......Page 272
4-6 The Exponential Map. Geodesic Polar Coordinates......Page 291
4-7 Further Properties of Geodesics; Convex Neighborhoods......Page 306
Appendix: Proofs of the Fundamental Theorems of The Local Theory of Curves and Surfaces......Page 317
5-1 Introduction......Page 323
5-2 The Rigidity of the Sphere......Page 325
5-3 Complete Surfaces. Theorem of Hopf-Rinow......Page 333
5-4 First and Second Variations of the Arc Length; Bonnet\'s Theorem......Page 347
5-5 Jacobi Fields and Conjugate Points......Page 365
5-6 Covering Spaces; the Theorems of Hadamard......Page 379
5-7 Global Theorems for Curves; the Fary-Milnor Theorem......Page 398
5-8 Surfaces of Zero Gaussian Curvature......Page 416
5-9 Jacobi\'s Theorems......Page 423
5-10 Abstract Surfaces; Further Generalizations......Page 433
5-11 Hilbert\'s Theorem......Page 454
Appendix: Point-Set Topology of Euclidean Spaces......Page 464
Bibliography and Comments......Page 479
Hints and Answers to Some Exercises......Page 483
Index......Page 505