دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: A.V. Pogorelov
سری:
ناشر: Noordhoff
سال نشر:
تعداد صفحات: [179]
زبان: English
فرمت فایل : DJVU (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 Mb
در صورت تبدیل فایل کتاب Differential geometry به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هندسه دیفرانسیل نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Title page INTRODUCTION PART ONE Theory of Curves CHAPTER 1. The concept of curve 1. Elementary curve 2. Simple curve 3. General curve 4. Regular curve. Analytic definition of a curve 5. On the implicit representatian of a curve 6. Singular points on regular plane curves 7. Singular points on analytic curves, defined by equations in the implicit form 8. Asymptotes to curves EXERCISES FOR CHAPTER 1 PROBLEMS AND THEOREMS FOR CHAPTER 1 CHAPTER II. Concepts for curves which are related to the concept of contact 1. Vector functions of a scalar argument 2. Tangent to a curve 3. The osculating plane to a curve 4. Contact of curves 5. Envelope of a family of curves, depending on a parameter EXERCISES FOR CHAPTER II PROBLEMS AND THEOREMS FOR CHAPTER II CHAPTER III. Fundamental concepts for curves which are related to the concepts of curvature and torsion 1. Concept of arc length of a curve 2. Arc length of a smooth curve. Natural parametrization of a curve 3. Curvature of a curve 4. Torsion of a curve 5. The Frenet formulas. Natural equations of a curve 6. Plane curves EXERCISES FOR CHAPTER III PROBLEMS AND THEOREMS FOR CHAPTER III PART Two Theory of surfaces CHAPTER IV. Concept of surface 1. Elementary surface. Simple surface. General surface 2. Regular surface. Analytic definition of a surface 3. Special parametrizations of a surface 4. Singular points on regular surfaces EXERCISES AND PROBLEMS FOR CHAPTER IV CHAPTER V. Fundamental concepts for surlaces which are related to the concept of contact 1. Tangent plane to a surface 2. Lemma on the distance from a point to a surface. Contact of a curve with a surface 3. Osculating paraboloid. Classification of points on a surface 4. Envelope of a family of surfaces, depending on one or two parameters 5. Envelope of a family of surfaces, depending on one parameter EXERCISES FOR CHAPTER V PROBLEMS AND THEOREMS FOR CHAPTER V CHAPTER VI. First quadratic form of a surface and concepts related to it 1. Length of a curve on a surface 2. Angle between curves on a surface 3. Surface area 4. Conformal mapping 5. Isometric surfaces. Bending of surfaces EXERCISES FOR CHAPTER VI PROBLEMS AND THEOREMS FOR CHAPTER VI CHAPTER VII. Second quadratic form of a surface and questions about surface theory related to it 1. Curvature of a curve lying on a surface 2. Asymptotic directions. Asymptotic curves. Conjugate directions. Conjugate nets on a surface 3. Principal directions on a surface. Lines of curvature 4. Relation between the principal curvatures of a surface and the normal curvature in an arbitrary direction. Mean and Gaussian curvatures of a surface 5. Ruled surfaces 6. Surfaces of revolution EXERCISES FOR CHAPTER VII PROBLEMS AND THEOREMS FOR CHAPTER VII CHAPTER VIII. Fundamental equations of the theory of surfaces 1. The Gauss formula for total curvature of a surface 2. Derived formulas 3. The Peterson-Codazzi formulas 4. Existence and uniqueness of a surface with givcn first and second quadratic forms PROBLEMS AND THEOREMS FOR CHAPTER VIII CHAPTER IX. Intrinsic geometry of surfaces 1. Geodesic curvature of a curve on a surface 2. Geodesic curves on a surface 3. Semigeodesic parametrization of a surface 4. Shortest curves on a surface 5. The Gauss-Bonnet theorem 6. Surfaces with constant Gaussian curvature PROBLEMS AND THEOREMS FOR CHAPTER IX BIBLIOGRAPHY INDEX