دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1st ed. 2019
نویسندگان: Vassili Kolokoltsov
سری: Birkhäuser Advanced Texts Basler Lehrbücher
ISBN (شابک) : 3030033767, 9783030033767
ناشر: Birkhäuser
سال نشر: 2019
تعداد صفحات: 536
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 3 مگابایت
کلمات کلیدی مربوط به کتاب معادلات دیفرانسیل در اندازه گیری ها و فضاهای تابعی (): ریاضیات، حساب دیفرانسیل و انتگرال، معادلات دیفرانسیل
در صورت تبدیل فایل کتاب Differential Equations on Measures and Functional Spaces (Birkhäuser Advanced Texts Basler Lehrbücher) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب معادلات دیفرانسیل در اندازه گیری ها و فضاهای تابعی () نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب پیشرفته بر روی معادلات دیفرانسیل معمولی (ODE) در
Banach و فضاهای محدب محلی به طور کلی تمرکز دارد، به ویژه ODE
ها در اندازه گیری ها و فضاهای تابع مختلف. این به طور خلاصه
اصول اولیه را مورد بحث قرار می دهد قبل از اینکه به تحقیق لبه
برش در معادلات جزئی و شبه دیفرانسیل خطی و غیرخطی، معادلات
جنبشی عمومی و تکامل کسری بپردازد. سطح عمومیت انتخاب شده برای
مطالعه مهمترین معادلات غیرخطی فیزیک ریاضی مانند بولتزمن،
اسمولوچوفسکی، ولاسوف، لاندو-فوکر-پلانک، کان-هیلیارد،
همیلتون-جاکوبی-بلمن، شرودینگر غیرخطی، مک کین-وی مناسب است.
انتشار و گسترش غیر محلی آنها، سینتیک قانون عمل جرم از شیمی
همچنین تحولات غیرخطی ناشی از زیستشناسی تکاملی و بازیهای
میدان متوسط، نظریه بهینهسازی، اپیدمیها و زیستشناسی سیستم،
در مدلهای کلی ذرات یا عوامل برهمکنشکننده که تقسیم و ادغام،
برخورد و شکست، جهش و رشد پیوند ترجیحی در شبکهها را توصیف
میکنند را پوشش میدهد.
This advanced book focuses on ordinary differential equations
(ODEs) in Banach and more general locally convex spaces, most
notably the ODEs on measures and various function spaces. It
briefly discusses the fundamentals before moving on to the
cutting edge research in linear and nonlinear partial and
pseudo-differential equations, general kinetic equations and
fractional evolutions. The level of generality chosen is
suitable for the study of the most important nonlinear
equations of mathematical physics, such as Boltzmann,
Smoluchovskii, Vlasov, Landau-Fokker-Planck, Cahn-Hilliard,
Hamilton-Jacobi-Bellman, nonlinear Schroedinger,
McKean-Vlasov diffusions and their nonlocal extensions,
mass-action-law kinetics from chemistry. It also covers
nonlinear evolutions arising in evolutionary biology and
mean-field games, optimization theory, epidemics and system
biology, in general models of interacting particles or agents
describing splitting and merging, collisions and breakage,
mutations and the preferential-attachment growth on
networks.
Contents Preface Objectives, scope and methodology General context and specific features Readers and prerequisites Bibliographic comments Acknowledgement Standard notations Standard abbreviations Chapter 1 Analysis on Measures and Functional Spaces 1.1 Banach spaces: notations and examples 1.2 Smooth functions on Banach spaces 1.3 Additive and multiplicative integrals 1.4 Differentials of the norms 1.5 Smooth mappings between Banach spaces 1.6 Locally convex spaces and Fréchet spaces 1.7 Linear operators in spaces of measures and functions 1.8 Fractional calculus 1.9 Generalized functions: main operations 1.10 Generalized functions: regularization 1.11 Fourier transform, fundamental solutions and Green functions 1.12 Sobolev spaces 1.13 Variational derivatives 1.14 Derivatives compatible with duality, AMand AL-spaces 1.15 Hints and answers to chosen exercises 1.16 Summary and comments Chapter 2 Basic ODEs in Complete Locally Convex Spaces 2.1 Fixed-point principles for curves in Banach spaces 2.2 ODEs in Banach spaces: well-posedness 2.3 Linear equations and chronological exponentials 2.4 Linear evolutions involving spatially homogeneous ΨDOs 2.5 Hamiltonian systems, boundary-value problems and the method of shooting 2.6 Hamilton–Jacobi equation, method of characteristics and calculus of variation 2.7 Hamilton–Jacobi–Bellman equation and optimal control 2.8 Sensitivity of integral equations 2.9 ODEs in Banach spaces: sensitivity 2.10 Linear first-order partial differential equations 2.11 Equations with memory: causality 2.12 Equations with memory: fractional derivatives 2.13 Linear fractional ODEs and related integral equations 2.14 Linear fractional evolutions involving spatially homogeneous ΨDOs 2.15 Sensitivity of integral and differential equations: advanced version 2.16 ODEs in locally convex spaces 2.17 Monotone and accretive operators 2.18 Hints and answers to chosen exercises 2.19 Summary and comments Chapter 3 Discrete Kinetic Systems: Equations in l+p 3.1 Equations in Rn+ 3.2 Examples in Rn+: replicator dynamics and mass-action-law kinetics 3.3 Entropy and equilibria for linear evolutions in Rn+ 3.4 Entropy and equilibria for nonlinear evolutions in Rn+ 3.5 Kinetic equations for collisions, fragmentation, reproduction and preferential attachment 3.6 Simplest equations in l+p 3.7 Existence of solutions for equations in l+p 3.8 Additive bounds for rates 3.9 Evolution of moments under additive bounds 3.10 Accretive operators in lp 3.11 Accretivity for evolutions with additive rates 3.12 The major well-posedness result in l+p 3.13 Sensitivity 3.14 Second-order sensitivity 3.15 Stability of solutions with respect to coefficients 3.16 Hints and answers to chosen exercises 3.17 Summary and comments Chapter 4 Linear Evolutionary Equations: Foundations 4.1 Semigroups and their generators 4.2 Semigroups of operators on Banach spaces 4.3 Simple diffusions and the Schrödinger equation 4.4 Evolutions generated by powers of the Laplacian 4.5 Evolutions generated by ΨDOs with homogeneous symbols and their mixtures 4.6 Perturbation theory and the interaction picture 4.7 Path integral representation 4.8 Diffusion with drifts and Schrödinger equations with singular potentials and magnetic fields 4.9 Propagators and their generators 4.10 Well-posedness of linear Cauchy problems 4.11 The operator-valued Riccati equation 4.12 An infinite-dimensional diffusion equation in variational derivatives 4.13 Perturbation theory for propagators 4.14 Diffusions and Schrödinger equations with nonlocal terms 4.15 ΨDOs with homogeneous symbols (time-dependent case) 4.16 Higher-order ΨDEs with nonlocal terms 4.17 Hints and answers to chosen exercises 4.18 Summary and comments Chapter 5 Linear Evolutionary Equations: Advanced Theory 5.1 T-products with three-level Banach towers 5.2 Adding generators with 4-level Banach towers 5.3 Mixing generators 5.4 The method of frozen coefficients: heuristics 5.5 The method of frozen coefficients: estimates for the Green function 5.6 The method of frozen coefficients: main examples 5.7 The method of frozen coefficients: regularity 5.8 The method of frozen coefficients: the Cauchy problem 5.9 Uniqueness via duality and accretivity; generalized solutions 5.10 Uniqueness via positivity and approximations; Feller semigroups 5.11 Lévy–Khintchin generators and convolution semigroups 5.12 Potential measures 5.13 Vector-valued convolution semigroups 5.14 Equations of order at most one 5.15 Smoothness and smoothing of propagators 5.16 Summary and comments Chapter 6 The Method of Propagators for Nonlinear Equations 6.1 Hamilton–Jacobi–Bellman (HJB) and Ginzburg–Landau equations 6.2 Higher-order PDEs and ΨDEs, and Cahn–Hilliard-type equations 6.3 Nonlinear evolutions and multiplicative-integral equations 6.4 Causal equations and general path-dependent equations 6.5 Simplest nonlinear diffusions: weak treatment 6.6 Simplest nonlinear diffusions: strong treatment 6.7 Simplest nonlinear diffusions: regularity and sensitivity 6.8 McKean–Vlasov equations 6.9 Landau–Fokker–Planck-type equations 6.10 Forward-backward systems 6.11 Linearized evolution around non-linear propagators 6.12 Sensitivity of nonlinear propagators 6.13 Summary and comments Chapter 7 Equations in Spaces of Weighted Measures 7.1 Conditional positivity 7.2 Simplest equations that preserve positivity 7.3 Path-dependent equations and forward-backward systems 7.4 Kinetic equations (Boltzmann, Smoluchowski, Vlasov, Landau) and replicator dynamics 7.5 Well-posedness for basic kinetic equations 7.6 Equations with additive bounds for rates 7.7 On the sensitivity of kinetic equations 7.8 On the derivation of kinetic equations: second quantization and beyond 7.9 Interacting particles and measure-valued diffusions 7.10 Summary and comments Chapter 8 Generalized Fractional Differential Equations 8.1 Green functions of fractional derivatives and the Mittag-Leffler function 8.2 Linear evolution 8.3 The fractional HJB equation and related equations with smoothing generators 8.4 Generalized fractional integration and differentiation 8.5 Generalized fractional linear equations, part I 8.6 Generalized fractional linear equations, part II 8.7 The time-dependent case; path integral representation 8.8 Chronological operator-valued Feynmann–Kac formula 8.9 Summary and comments Chapter 9 Appendix 9.1 Fixed-point principles 9.2 Special functions 9.3 Asymptotics of the Fourier transform: power functions and their exponents 9.4 Asymptotics of the Fourier transform: functions of power growth 9.5 Argmax in convex Hamiltonians Bibliography Index