دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Elena Semouchkina
سری: Woodhead Publishing Series in Electronic and Optical Materials
ISBN (شابک) : 0128205962, 9780128205969
ناشر: Woodhead Publishing
سال نشر: 2021
تعداد صفحات: 328
[330]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 Mb
در صورت تبدیل فایل کتاب Dielectric Metamaterials and Metasurfaces in Transformation Optics and Photonics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب متامواد دی الکتریک و متاسطحها در اپتیک تبدیل و فوتونیک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
متامواد دی الکتریک و فراسطح ها در اپتیک تبدیل و فوتونیک به پیچیدگی پاسخ های الکترومغناطیسی از آرایه های تشدیدگرهای دی الکتریک می پردازد، که اغلب هنگام استفاده از مفاهیم فرامواد ساده شده از در نظر گرفتن حذف می شوند. نویسندگان کتاب بررسی کاملی از تشدید دی الکتریک در محیط های مختلف ارائه می کنند که برای طراحی دستگاه های نوری و فوتونیک مورد نیاز است. متامواد دی الکتریک و بلورهای فوتونیک با هم مقایسه شده و اثرات آنها مورد تجزیه و تحلیل قرار گرفته است. رویکردهای طراحی و نمونه هایی از طرح های شنل نامرئی بر اساس رسانه های مصنوعی نیز گنجانده شده است. چالش فعلی ترکیب مواد مصنوعی در دستگاههای مبتنی بر اپتیک و فوتونیک تبدیل نیز پوشش داده شده است.
Dielectric Metamaterials and Metasurfaces in Transformation Optics and Photonics addresses the complexity of electromagnetic responses from arrays of dielectric resonators, which are often omitted from consideration when using simplified metamaterials concepts. The book's authors present a thorough consideration of dielectric resonances in different environments which is needed to design optical and photonic devices. Dielectric metamaterials and photonic crystals are compared, with their effects analyzed. Design approaches and examples of designs for invisibility cloaks based on artificial media are also included. Current challenge of incorporating artificial materials into transformation optics-based and photonics devices are also covered.
Front Cover Dielectric Metamaterials and Metasurfaces in Transformation Optics and Photonics Copyright Page Contents Acknowledgments 1. Periodic arrays of dielectric resonators as metamaterials and photonic crystals 1.1 Conventional metamaterials versus dielectric metamaterials 1.1.1 Periodic arrays of dielectric resonators 1.1.2 Properties of conventional metamaterials composed of split-ring resonators and cut wires 1.1.3 First realizations of metamaterial properties in arrays of dielectric resonators 1.2 Search for the double negativity of the media composed of dielectric resonators at combined excitation in them of elect... 1.3 Dualism of the properties demonstrated by dielectric resonator arrays References Appendix A Describing photonic crystals by energy band diagrams 2. Specifics of wave propagation through chains of coupled dielectric resonators and bulk dielectric metamaterials 2.1 Complexity of wave transmission processes in dielectric MMs: beyond the effective medium approximation 2.2 Specific features of transmission spectra of dielectric disk/rod arrays 2.2.1 Formation of resonance-related stopbands in transmission spectra of DR arrays 2.2.2 Bandgaps and transmission specifics of dielectric rod arrays 2.2.3 Transmission bands with forward and backward wave propagation in the spectra of rod arrays 2.3 Characterizing wave transmission due to coupling between dielectric resonators in arrays by using waveguides at below c... 2.3.1 Multiband below cut-off transmission in waveguides loaded by dielectric metamaterials 2.3.2 Formation of electro- and magnetoinductive waves in chains of coupled dielectric resonators 2.3.3 Fabry–Perot resonances of MI and EI waves in finite DR arrays 2.3.4 Analysis of Fabry–Perot resonances in DR arrays by using the transfer matrix method and derivation of equivalent para... References 3. The basics of transformation optics. Realizing invisibility cloaking by using resonances in conventional and dielectr... 3.1 Transformation optics approaches to designing electromagnetic devices 3.2 Principles of transformation optics–based invisibility cloaking 3.3 Reducing prescriptions for spatial dispersion of material parameters in cylindrical invisibility cloaks 3.4 Realizing reduced spatial dispersion of material parameters in the microwave cloak formed from metal split-ring resonat... 3.5 Coupling effects and resonance splitting problems in the microwave cloak composed of split-ring resonators 3.6 Implementing optical and microwave cloaks using identical dielectric resonators 3.6.1 Reasons of interest to employing dielectric resonators in the cloaks 3.6.2 Effective material parameters of resonator arrays 3.6.3 Providing prescribed by transformation optics spatial dispersion of material parameters in the infrared cloak using i... 3.6.4 Addressing the problem of interresonator coupling in the cloak formed from dielectric resonators 3.6.5 Implementing the microwave cloak composed of identical dielectric resonators References 4. Properties of dielectric metamaterials defined by their analogy with strongly modulated photonic crystals 4.1 Negative refraction in dielectric metamaterials composed of identical resonators 4.1.1 Negative refraction in metamaterials and photonic crystal structures 4.1.2 Approaches used at the studies of dispersive and resonance properties of dielectric rod arrays 4.1.3 Detection of Mie resonances and surface resonances in energy band diagrams 4.1.4 Refraction controlled by dispersion of transmission branches 4.1.5 Origin of the second transmission branch in dielectric MMs and its irrelevance to Lorentz-type responses 4.2 Superluminal media formed by dielectric MMs due to their dispersive properties 4.2.1 Superluminal phase velocity of waves in MMs and dielectric PhCs 4.2.2 Transformation of energy band diagrams of dielectric rod arrays at increasing rod permittivity 4.2.3 Ranges of array parameters providing superluminal wave propagation 4.2.4 Converting prescriptions for the effective permittivity and permeability of the transformation medium into prescripti... 4.2.5 Approach to realizing prescribed index distributions in transformation media 4.2.6 Approach to realizing anisotropic refraction in transformation media References 5. Engineering transformation media of invisibility cloaks by using crystal-type properties of dielectric metamaterials 5.1 Transformation media formed from two-dimensional (2D) arrays of dielectric rods with square lattices 5.1.1 Transformation optics (TO)–based prescriptions for the dispersion of directional refractive index components in the m... 5.1.2 Providing prescribed dispersion of azimuthal index component in the cloak medium by using rod arrays with different l... 5.1.3 Selecting optimal size of array fragments to form the cloak medium 5.1.4 Approximating index dispersion, prescribed by TO, using step-functions 5.1.5 Specifics of cloak design and performance 5.1.6 Clarifying the role of radial index dispersion in the transformation medium 5.1.7 Self-collimation of waves in coiled arrays 5.2 Transformation media formed from rod arrays with rectangular lattices 5.2.1 Providing anisotropic dispersion of index components in transformation media 5.2.2 Modifying parameters of the cloak and rod arrays to satisfy TO prescriptions for index dispersions 5.2.3 Reduced prescriptions for spatial dispersion of index components in the cloak 5.2.4 Specifics of the design and performance of the cloaks formed from dielectric rod arrays with rectangular lattices References 6. Light scattering from single dielectric particles and dielectric metasurfaces at Mie-type dipolar resonances 6.1 Mie resonances in dielectric spheres and directional scattering from these particles 6.1.1 Mie resonances and their spectral characterization. The Kerker’s effects 6.1.2 Directional scattering from dielectric spheres at the Kerker’s conditions 6.1.3 Clarifying specific features of resonance responses from dielectric spheres at varying their dielectric permittivity 6.1.4 Controlled by the resonances directivity of scattering from dielectric spheres 6.2 Full transmission with 2π phase control in metasurfaces composed of cylindrical silicon resonators 6.2.1 Employing cylindrical silicon resonators instead of spheres to control dipolar modes and scattering from particles by... 6.2.2 Tailoring dipolar resonance modes by varying the heights of silicon cylinders 6.2.3 Changes in transmittance-phase spectra of resonator arrays at tailoring dipolar resonance modes 6.3 Arraying dielectric resonators in metasurfaces: effects of lattice density 6.3.1 Physical phenomena defined by the periodicity of metasurfaces and approaches to studying the effects of periodicity 6.3.2 Effects of lattice parameters on electromagnetic responses of dielectric metasurfaces 6.3.3 Visualization of integrated resonance responses in metasurfaces 6.4 Specific features of resonance responses in sparse and dense metasurfaces 6.4.1 Criteria for classification metasurfaces based on their packing density 6.4.2 Resonance responses and their tailoring in sparse metasurfaces 6.4.3 Resonance responses and their tailoring in dense MSs References 7. Surface lattice resonances in metasurfaces composed of silicon resonators 7.1 Applying the concepts of surface waves and collective responses to metasurfaces (MSs) 7.1.1 Surface waves as the cause of lattice resonances and surface plasmon polaritons in resonator arrays 7.1.2 Diffraction grating effects and lattice modes in plasmonic structures 7.2 Elementary resonances and collective lattice modes in resonance spectra of silicon MSs 7.2.1 Electric and magnetic lattice modes in resonance spectra of silicon MSs 7.2.2 Sharp line shapes of lattice modes in spectra of sparse MSs with hexagonal lattices 7.2.3 Collective modes in square-latticed MSs revealed as red-shifted sharp spectral line shapes and fringes of resonance f... 7.3 Red shifting of resonance responses and hybridization of elementary and lattice resonances 7.4 Transforming resonance responses by varying MS lattice constants 7.4.1 Changes in scattering from square-latticed MSs at increasing their lattice constants 7.4.2 Changes in scattering from MSs with rectangular lattices at lattice constant variation: the effects of coincidence of... 7.5 Effects of LRs on field distributions in planar cross-sections of MSs 7.5.1 Transformations of field distributions at increasing the lattice constants of MSs 7.5.2 Employing electric field probe signal spectra for investigating fields controlled by LRs 7.6 Discussion of the revealed specifics of lattice resonances References 8. Electromagnetically induced transparency in metasurfaces composed from silicon or ceramic cylindrical resonators 8.1 Phenomenology of electromagnetically induced transparency (EIT)-like phenomena in optical metasurfaces (MSs), composed ... 8.2 EIT-like phenomena in properly scaled microwave MSs 8.3 Experimental verification of EIT-type responses of MSs in the microwave range 8.4 Detection of EIT in atomic systems 8.5 Analogies of EIT in resonator arrays, metamaterials, and MSs 8.6 Interference processes and Fano resonances at EIT realization in MSs composed of identical silicon resonators 8.7 Linking Fano-type responses to the EIT appearance in MSs composed of silicon resonators References Index Back Cover