دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: Thomas L. Szabo (Auth.)
سری:
ISBN (شابک) : 9780123964878
ناشر: Academic Press
سال نشر: 2014
تعداد صفحات: 801
زبان:
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 87 Mb
در صورت تبدیل فایل کتاب Diagnostic Ultrasound Imaging: Inside Out به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تصویربرداری سونوگرافی تشخیصی: داخل بیرون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
تصویربرداری اولتراسوند تشخیصی شرح یکپارچه ای از اصول فیزیکی تصویربرداری اولتراسوند، پردازش سیگنال، سیستم ها و اندازه گیری ها ارائه می دهد. این مرجع جامع یک منبع اصلی برای دانشجویان تحصیلات تکمیلی و مهندسان در تحقیق و طراحی سونوگرافی پزشکی است. با تداوم توسعه سریع فناوری اولتراسوند در تشخیص پزشکی، این موضوع برای مهندسان زیست پزشکی، مهندسان و پزشکان بالینی و مراقبت های بهداشتی، فیزیکدانان پزشکی و متخصصان مرتبط در زمینه های پردازش سیگنال و تصویر بسیار مهم است. این کتاب شامل 17 فصل جدید و به روز شده است که مبانی و آخرین پیشرفت ها در این زمینه را پوشش می دهد و شامل چهار پیوست، 450 شکل (60 شکل رنگی در وب سایت همراه موجود است) و تقریبا 1500 مرجع است. این کتاب علاوه بر هجوم مداوم خوانندگانی که وارد حوزه اولتراسوند در سراسر جهان میشوند و نیاز به پایهای گسترده در فناوریهای اصلی اولتراسوند دارند، این کتاب به کسانی که قبلاً در این زمینهها کار میکردند، توضیحات واضح و جامعی از این موضوعات کلیدی جدید و همچنین مقدمههایی برای آنها ارائه میدهد. نوآوری های پیشرفته در این زمینه.
Diagnostic Ultrasound Imaging provides a unified description of the physical principles of ultrasound imaging, signal processing, systems and measurements. This comprehensive reference is a core resource for both graduate students and engineers in medical ultrasound research and design. With continuing rapid technological development of ultrasound in medical diagnosis, it is a critical subject for biomedical engineers, clinical and healthcare engineers and practitioners, medical physicists, and related professionals in the fields of signal and image processing. The book contains 17 new and updated chapters covering the fundamentals and latest advances in the area, and includes four appendices, 450 figures (60 available in color on the companion website), and almost 1,500 references. In addition to the continual influx of readers entering the field of ultrasound worldwide who need the broad grounding in the core technologies of ultrasound, this book provides those already working in these areas with clear and comprehensive expositions of these key new topics as well as introductions to state-of-the-art innovations in this field.
Diagnostic Ultrasound Imaging: Inside Out Copyright Preface Acknowledgments 1 Introduction 1.1 Introduction 1.1.1 Early Beginnings 1.1.2 Sonar 1.2 Echo Ranging of the Body 1.3 Ultrasound Portrait Photographers 1.4 Ultrasound Cinematographers 1.5 Modern Ultrasound Imaging Developments 1.6 Enabling Technologies for Ultrasound Imaging 1.7 Ultrasound Imaging Safety 1.8 Ultrasound and Other Diagnostic Imaging Modalities 1.8.1 Imaging Modalities Compared 1.8.2 Ultrasound 1.8.3 Plane X-rays 1.8.4 Computed Tomography Imaging 1.8.5 Magnetic Resonance Imaging Magnetic Resonance Imaging Applications 1.8.6 Magnetoencephalography 1.8.7 Positron Emission Tomography 1.9 Contrast Agents 1.9.1 Computed Tomography Agents 1.9.2 Magnetic Resonance Imaging Agents 1.9.3 Ultrasound Agents 1.10 Comparison of Imaging Modalities 1.10.1 Image Fusion 1.10.2 Multi-wave and Interactive Imaging 1.11 Conclusion References Bibliography 2 Overview 2.1 Introduction 2.2 Fourier Transform 2.2.1 Introduction to the Fourier Transform 2.2.2 Fourier Transform Relationships 2.3 Building Blocks 2.3.1 Time and Frequency Building Blocks 2.3.2 Space Wave Number Building Block Spatial Transforms Spatial Transform of a Line Source Spatial Frequency Building Blocks 2.4 Central Diagram References 3 Acoustic Wave Propagation 3.1 Introduction to Waves 3.2 Plane Waves in Liquids and Solids 3.2.1 Introduction 3.2.2 Wave Equations for Fluids 3.2.3 One-dimensional Wave Hitting a Boundary 3.2.4 ABCD Matrices 3.2.5 Oblique Waves at a Liquid–Liquid Boundary 3.3 Elastic Waves in Solids 3.3.1 Types of Waves 3.3.2 Equivalent Networks for Waves 3.3.3 Waves at a Fluid–Solid Boundary 3.4 Elastic Wave Equations 3.5 Conclusion References Bibliography 4 Attenuation 4.1 Losses in Tissues 4.1.1 Losses in Exponential Terms and in Decibels 4.1.2 Tissue Data 4.2 Losses in Both Frequency and Time Domains 4.2.1 The Material Transfer Function 4.2.2 The Material Impulse Response Function 4.3 Tissue Models 4.3.1 Introduction 4.3.2 The Time Causal Model 4.4 Pulses in Lossy Media 4.4.1 Scaling of the Material Impulse Response Function 4.4.2 Pulse Propagation: Interactive Effects in Time and Frequency 4.4.3 Pulse Echo Propagation 4.5 Modified Hooke’s Laws and Tissue Models for Viscoelastic Media 4.5.1 Voigt Model 4.5.2 Time Causal Model 4.5.3 Maxwell Model 4.5.4 Thermoviscous Relaxation Model 4.5.5 Multiple Relaxation Model 4.5.6 Zener Model 4.5.7 Fractional Zener and Kelvin–Voigt Fractional Derivative Models 4.6 Wave Equations for Tissues 4.6.1 Voigt Model Wave Equation 4.6.2 Time Causal Model Wave Equations 4.6.3 Time Causal Model Wave Equations in Fractional Calculus Form 4.7 Discussion 4.7.1 First Principles 4.7.2 Power Law Wave Equation Implementations 4.7.3 Transient Solutions for Power Law Media 4.7.4 Green Functions for Power Law Media 4.7.5 Shear Waves in Power Law Media 4.8 Penetration and Time Gain Compensation References 5 Transducers 5.1 Introduction to Transducers 5.1.1 Transducer Basics 5.1.2 Transducer Electrical Impedance 5.1.3 Summary 5.2 Resonant Modes of Transducers 5.2.1 Resonant Crystal Geometries 5.2.2 Determination of Electroacoustic Coupling Constants 5.2.3 Array Construction 5.3 Equivalent Circuit Transducer Model 5.3.1 KLM Equivalent Circuit Model 5.3.2 Organization of Overall Transducer Model 5.3.3 Transducer at Resonance 5.4 Transducer Design Considerations 5.4.1 Introduction 5.4.2 Insertion Loss and Transducer Loss 5.4.3 Electrical Loss 5.4.4 Acoustical Loss 5.4.5 Matching Layers 5.4.6 Design Examples 5.5 Transducer Pulses 5.5.1 Standard Pulse and Spectral Measurements 5.6 Equations for Piezoelectric Media 5.7 Piezoelectric Materials 5.7.1 Introduction 5.7.2 Normal Polycrystalline Piezoelectric Ceramics 5.7.3 Relaxor Piezoelectric Ceramics 5.7.4 Single-crystal Ferroelectrics 5.7.5 Piezoelectric Organic Polymers 5.7.6 Domain-engineered Ferroelectric Single Crystals 5.7.7 Composite Materials 5.7.8 Piezoelectric Gels 5.7.9 Lead-free Piezoelectrics 5.8 Comparison of Piezoelectric Materials 5.9 Transducer Advanced Topics 5.9.1 Internal Transducer Losses 5.9.2 Trends in Transducer Modeling 5.9.3 Matrix or 2D Arrays 5.9.4 CMUT Arrays 5.9.5 High-Frequency Transducers References Bibliography 6 Beamforming 6.1 What is Diffraction? 6.2 Fresnel Approximation of Spatial Diffraction Integral 6.3 Rectangular Aperture 6.4 Apodization 6.5 Circular Apertures 6.5.1 Near and Far Fields for Circular Apertures 6.5.2 Universal Relations for Circular Apertures 6.6 Focusing 6.6.1 Introduction to Focusing 6.6.2 Derivation of Focusing Relations 6.6.3 Zones for Focusing Transducers 6.6.4 Focusing Gain and Peak Pressure Values 6.6.5 Depth of Field 6.6.6 Scaling of Beams 6.6.7 Focusing Summary 6.7 Angular Spectrum of Waves 6.8 Diffraction Loss 6.9 Limited Diffraction Beams 6.10 Holey Focusing Transducers References Bibliography 7 Array Beamforming 7.1 Why Arrays? 7.2 Diffraction in the Time Domain 7.3 Circular Radiators in the Time Domain 7.4 Arrays 7.4.1 The Array Element 7.4.2 Pulsed Excitation of an Element 7.4.3 Array Sampling and Grating Lobes 7.4.4 Element Factors 7.4.5 Beam Steering 7.4.6 Focusing and Steering 7.5 Pulse–Echo Beamforming 7.5.1 Introduction 7.5.2 Beam-shaping 7.5.3 Pulse–Echo Focusing 7.6 Two-dimensional Arrays 7.7 Baffled 7.8 Computational Diffraction Methods 7.9 Nonideal Array Performance 7.9.1 Quantization and Defective Elements 7.9.2 Sparse and Thinned Arrays 7.9.3 1.5-dimensional Arrays 7.9.4 Diffraction in Absorbing Media 7.9.5 Body Effects 7.10 Conformable and Deformable Arrays References Bibliography 8 Wave Scattering and Imaging 8.1 Introduction 8.2 Scattering of Objects 8.2.1 Specular Scattering 8.2.2 Diffusive Scattering 8.2.3 Diffractive Scattering Frequency Domain Born Approximation 8.2.4 Scattering Summary 8.3 Role of Transducer Diffraction and Focusing 8.3.1 Time Domain Born Approximation Including Diffraction 8.4 Role of Imaging 8.4.1 Imaging Process 8.4.2 A Different Attitude 8.4.3 Speckle 8.4.4 Contrast 8.4.5 Van Cittert–Zernike Theorem 8.4.6 Speckle Reduction 8.4.7 Speckle Tracking References Bibliography 9 Scattering From Tissue and Tissue Characterization 9.1 Introduction 9.2 Scattering from Tissues 9.3 Properties of and Propagation in Heterogeneous Tissue 9.3.1 Properties of Heterogeneous Tissue 9.3.2 Propagation in Heterogeneous Tissue 9.4 Array Processing of Scattered Pulse–Echo Signals 9.5 Tissue Characterization Methods 9.5.1 Introduction 9.5.2 Fundamentals 9.5.3 Backscattering Definitions 9.5.4 The Classic Formulation 9.5.5 Extensions of the Original Backscatter Methodology 9.5.6 Integrated Backscatter 9.5.7 Spectral Features 9.5.8 Backscattering Comparisons 9.6 Applications of Tissue Characterization 9.6.1 Radiology and Ophthalmic Applications 9.6.2 Cardiac Applications 9.6.3 High-Frequency Applications 9.6.4 Texture Analysis and Image Analysis 9.7 Aberration Correction 9.7.1 General Methods 9.7.2 Time Reversal 9.7.3 Focusing through the Skull 9.8 Wave Equations for Tissue References Bibliography 10 Imaging Systems and Applications 10.1 Introduction 10.2 Trends in Imaging Systems 10.2.1 General Commercial Systems 10.2.2 New Developments 10.3 Major Controls 10.4 Block Diagram 10.5 Major Modes 10.6 Clinical Applications 10.7 Transducers and Image Formats 10.7.1 Image Formats and Transducer Types 10.7.2 Transducer Implementations 10.7.3 Multidimensional Arrays 10.8 Front End 10.8.1 Transmitters 10.8.2 Receivers 10.9 Scanner 10.9.1 Beamformers 10.9.2 Signal Processors Bandpass filters Matched filters 10.10 Back End 10.10.1 Scan Conversion and Display 10.10.2 Computation and Software 10.11 Advanced Signal Processing 10.11.1 High-end Imaging Systems 10.11.2 Attenuation and Diffraction Amplitude Compensation 10.11.3 Frequency Compounding 10.11.4 Spatial Compounding 10.11.5 Real-time Border Detection 10.11.6 Three- and Four-dimensional Imaging 10.12 Alternate Imaging System Architectures 10.12.1 Introduction 10.12.2 Plane-wave Compounding 10.12.3 Fourier Transform Imaging 10.12.4 Synthetic Aperture Imaging 10.12.5 Parallel Beamforming Archictectures 10.12.6 Ultrasound Research Systems Verasonics System Ultrasonix imaging system Visualsonics imaging systems Other research systems References Bibliography 11 Doppler Modes 11.1 Introduction 11.2 The Doppler Effect 11.3 Scattering from Flowing Blood in Vessels 11.4 Continuous-Wave Doppler 11.5 Pulsed-Wave Doppler 11.5.1 Introduction 11.5.2 Range-Gated Pulsed Doppler Processing 11.5.3 Quadrature Sampling 11.5.4 Final Filtering and Display 11.5.5 Pulsed Doppler Examples 11.6 Comparison of Pulsed- and Continuous-Wave Doppler 11.7 Ultrasound Color Flow Imaging 11.7.1 Introduction 11.7.2 Phase-Based Mean Frequency Estimators 11.7.3 Time-Domain-Based Estimators 11.7.4 Implementations of Color Flow Imaging 11.7.5 Power Doppler and Other Variants of Color Flow Imaging 11.7.6 Previous Developments 11.8 Non-Doppler Visualization of Blood Flow 11.9 Doppler Revisited 11.9.1 Doppler Methods Reviewed 11.9.2 Doppler Methods Re-Examined 11.10 Vector Doppler 11.10.1 Introduction 11.10.2 Transverse Oscillation Method 11.10.3 Synthetic Aperture Flow Imaging 11.10.4 Plane-Wave Flow Imaging Introduction Plane Wave Excitation for Vector Doppler Imaging Plane-Wave Compounding for Doppler Imaging Plane-Wave Investigations for Doppler Imaging 11.11 Functional Ultrasound Imaging References Bibliography 12 Nonlinear Acoustics and Imaging 12.1 Introduction 12.2 What is Nonlinear Propagation? 12.3 Propagation in a Nonlinear Medium with Losses 12.4 Propagation of Beams in Nonlinear Media 12.5 Harmonic Imaging 12.5.1 Introduction 12.5.2 Resolution 12.5.3 Focusing 12.5.4 Natural Apodization 12.5.5 Body-Wall Effects 12.5.6 Absorption Effects 12.5.7 Harmonic Pulse Echo 12.6 Harmonic Signal Processing 12.7 Nonlinear Wave Equations and Simulation Models 12.8 Acoustic Radiation Forces and Streaming 12.8.1 Introduction 12.8.2 Plane Understanding 12.8.3 Particle Manipulation 12.8.4 Acoustic Radiation Forces in Tissue 12.8.5 Acoustic Streaming 12.8.6 Summary References Bibliography 13 Ultrasonic Exposimetry and Acoustic Measurements 13.1 Introduction to Measurements 13.2 Materials Characterization 13.2.1 Transducer Materials 13.2.2 Tissue Measurements 13.2.3 Measurement Considerations 13.3 Transducers 13.3.1 Impedance 13.3.2 Pulse–Echo Testing 13.3.3 Beam Plots 13.4 Acoustic Output Measurements 13.4.1 Introduction 13.4.2 Hydrophone Characteristics 13.4.3 Hydrophone Measurements of Absolute Pressure and Derived Parameters 13.4.4 Optical Hydrophones 13.4.5 Developments in Hydrophone Calibration 13.4.6 Force Balance Measurements of Absolute Power 13.4.7 Measurements of Temperature Rise 13.4.8 Field Measurements Revisited: Projection Methods 13.5 Performance Measurements 13.6 High-intensity Acoustic Measurements 13.6.1 HIFU Field Measurements 13.6.2 HIFU Power Measurements 13.6.3 HIFU Thermal Measurements 13.7 Thought Experiments References Bibliography 14 Ultrasound Contrast Agents 14.1 Introduction 14.2 Microbubble as Linear Resonator 14.3 Microbubble as Nonlinear Resonator 14.3.1 Harmonic Response 14.3.2 Subharmonic Response 14.4 Cavitation and Bubble Destruction 14.4.1 Rectified Diffusion 14.4.2 Cavitation 14.4.3 Mechanical Index 14.5 Ultrasound Contrast Agents 14.5.1 Basic Physical Characteristics of Ultrasound Contrast Agents 14.5.2 Acoustic Excitation of Ultrasound Contrast Agents 14.5.3 Mechanisms of Destruction of Ultrasound Contrast Agents 14.5.4 Secondary Physical Characteristics of Ultrasound Contrast Agents 14.6 Imaging with Ultrasound Contrast Agents 14.6.1 Introduction 14.6.2 Opacification 14.6.3 Perfusion 14.6.4 Other Methods 14.6.5 Clinical Applications 14.7 Therapeutic Ultrasound Contrast Agents: Smart Bubbles 14.7.1 Introduction to Types of Agents 14.7.2 Ultrasound-induced Bioeffects Related to Contrast Agents 14.7.3 Targeted Contrast Agent Applications 14.8 Equations of Motion for Contrast Agents 14.9 Conclusion References Bibliography 15 Ultrasound-induced Bioeffects 15.1 Introduction 15.2 Ultrasound-induced Bioeffects: Observation to Regulation 15.3 Thermal Effects 15.3.1 Introduction to Thermal Tissue Response 15.3.2 Heat Conduction Effects 15.3.3 Absorption Effects 15.3.4 Perfusion Effects 15.3.5 Combined Contributions to Temperature Elevation 15.3.6 Biologically Sensitive Sites 15.4 Nonthermal Effects 15.5 The Output Display Standard 15.5.1 Origins of the Output Display Standard 15.5.2 Thermal Indices 15.5.3 Mechanical Index 15.5.4 The ODS Revisited 15.6 Ultrasound-induced Bioeffects: A Closer Look 15.6.1 Introduction to Interrelated Bioeffects 15.6.2 The Thermal Continuum 15.6.3 Nonthermal Effects 15.6.4 Microbubbles 15.6.5 Combined Effects 15.7 Comparison of Medical Ultrasound Modalities 15.7.1 Introduction 15.7.2 Ultrasound Physiotherapy 15.7.3 Hyperthermia 15.7.4 High-intensity Focused Ultrasound 15.7.5 Lithotripsy 15.7.6 Diagnostic Ultrasound Imaging 15.8 Equations for Predicting Temperature Rise 15.9 Conclusions References Bibliography 16 Elastography 16.1 Introduction 16.2 Elastography Physics 16.2.1 Elastic Behavior: Longitudinal and Shear 16.2.2 Viscoelastic Effects 16.2.3 Strain Imaging 16.2.4 Nonlinearity Effects 16.2.5 Acoustic Radiation Forces 16.2.6 Model-based Inversion 16.3 Elastography Implementations 16.3.1 Introduction 16.3.2 1D Elastography 16.3.3 Quasi-static Elastography 16.3.4 Sonoelastography 16.3.5 Shear Wave Elasticity Imaging 16.3.6 Acoustic Radiation Impulse Imaging 16.3.7 Vibro-acoustography Imaging 16.3.8 Harmonic Motion Imaging 16.3.9 Supersonic Shear Imaging 16.3.10 Natural Imaging 16.4 Conclusions References Bibliography 17 Therapeutic Ultrasound 17.1 Introduction 17.2 Therapeutic Ultrasound Physics 17.2.1 Introduction 17.2.2 High-intensity Focused Ultrasound 17.2.3 Histotripsy and Hemostasis 17.2.4 Cavitation-enhanced HIFU 17.2.5 Monitoring 17.3 Therapeutic Ultrasound Applications 17.3.1 HIFU 17.3.1.1 Introduction 17.3.1.2 Extracorporeal HIFU 17.3.1.3 Transrectal HIFU 17.3.2 Transcranial Ultrasound 17.3.3 Sonothrombolysis 17.3.4 Cosmetic Ultrasound 17.3.5 Lithotripsy 17.3.6 Ultrasound-mediated Drug Delivery and Gene Therapy 17.3.7 Ultrasound-induced Neurostimulation 17.3.8 Bone and Wound Healing 17.4 Conclusions References Appendix A: The Fourier Transform A.1 Introduction A.2 The Fourier Transform A.2.1 Definitions A.2.2 Fourier Transform Pairs A.2.3 Fundamental Fourier Transform Operations A.2.4 The Sampled Waveform A.2.5 The Digital Fourier Transform A.2.6 Calculating a Fourier Transform with an FFT A.2.7 Calculating an Inverse Fourier Transform and a Hilbert Transform with an FFT A.2.8 Calculating a Two-dimensional Fourier Transform with FFTs References Bibliography Appendix B References Appendix C: Development of One-Dimensional KLM Model Based on ABCD Matrices References Appendix D: List of Groups Interested in Medical Ultrasound Index