ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Diagnostic Ultrasound Imaging: Inside Out

دانلود کتاب تصویربرداری سونوگرافی تشخیصی: داخل بیرون

Diagnostic Ultrasound Imaging: Inside Out

مشخصات کتاب

Diagnostic Ultrasound Imaging: Inside Out

ویرایش: [2 ed.] 
نویسندگان:   
سری:  
ISBN (شابک) : 9780123964878 
ناشر: Academic Press 
سال نشر: 2014 
تعداد صفحات: 801 
زبان:  
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 87 Mb 

قیمت کتاب (تومان) : 37,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 7


در صورت تبدیل فایل کتاب Diagnostic Ultrasound Imaging: Inside Out به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب تصویربرداری سونوگرافی تشخیصی: داخل بیرون نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب تصویربرداری سونوگرافی تشخیصی: داخل بیرون

تصویربرداری اولتراسوند تشخیصی شرح یکپارچه ای از اصول فیزیکی تصویربرداری اولتراسوند، پردازش سیگنال، سیستم ها و اندازه گیری ها ارائه می دهد. این مرجع جامع یک منبع اصلی برای دانشجویان تحصیلات تکمیلی و مهندسان در تحقیق و طراحی سونوگرافی پزشکی است. با تداوم توسعه سریع فناوری اولتراسوند در تشخیص پزشکی، این موضوع برای مهندسان زیست پزشکی، مهندسان و پزشکان بالینی و مراقبت های بهداشتی، فیزیکدانان پزشکی و متخصصان مرتبط در زمینه های پردازش سیگنال و تصویر بسیار مهم است. این کتاب شامل 17 فصل جدید و به روز شده است که مبانی و آخرین پیشرفت ها در این زمینه را پوشش می دهد و شامل چهار پیوست، 450 شکل (60 شکل رنگی در وب سایت همراه موجود است) و تقریبا 1500 مرجع است. این کتاب علاوه بر هجوم مداوم خوانندگانی که وارد حوزه اولتراسوند در سراسر جهان می‌شوند و نیاز به پایه‌ای گسترده در فناوری‌های اصلی اولتراسوند دارند، این کتاب به کسانی که قبلاً در این زمینه‌ها کار می‌کردند، توضیحات واضح و جامعی از این موضوعات کلیدی جدید و همچنین مقدمه‌هایی برای آنها ارائه می‌دهد. نوآوری های پیشرفته در این زمینه.


توضیحاتی درمورد کتاب به خارجی

Diagnostic Ultrasound Imaging provides a unified description of the physical principles of ultrasound imaging, signal processing, systems and measurements. This comprehensive reference is a core resource for both graduate students and engineers in medical ultrasound research and design. With continuing rapid technological development of ultrasound in medical diagnosis, it is a critical subject for biomedical engineers, clinical and healthcare engineers and practitioners, medical physicists, and related professionals in the fields of signal and image processing. The book contains 17 new and updated chapters covering the fundamentals and latest advances in the area, and includes four appendices, 450 figures (60 available in color on the companion website), and almost 1,500 references. In addition to the continual influx of readers entering the field of ultrasound worldwide who need the broad grounding in the core technologies of ultrasound, this book provides those already working in these areas with clear and comprehensive expositions of these key new topics as well as introductions to state-of-the-art innovations in this field.



فهرست مطالب

Diagnostic Ultrasound Imaging: Inside Out
Copyright
Preface
Acknowledgments
1 Introduction
	1.1 Introduction
		1.1.1 Early Beginnings
		1.1.2 Sonar
	1.2 Echo Ranging of the Body
	1.3 Ultrasound Portrait Photographers
	1.4 Ultrasound Cinematographers
	1.5 Modern Ultrasound Imaging Developments
	1.6 Enabling Technologies for Ultrasound Imaging
	1.7 Ultrasound Imaging Safety
	1.8 Ultrasound and Other Diagnostic Imaging Modalities
		1.8.1 Imaging Modalities Compared
		1.8.2 Ultrasound
		1.8.3 Plane X-rays
		1.8.4 Computed Tomography Imaging
		1.8.5 Magnetic Resonance Imaging
			Magnetic Resonance Imaging Applications
		1.8.6 Magnetoencephalography
		1.8.7 Positron Emission Tomography
	1.9 Contrast Agents
		1.9.1 Computed Tomography Agents
		1.9.2 Magnetic Resonance Imaging Agents
		1.9.3 Ultrasound Agents
	1.10 Comparison of Imaging Modalities
		1.10.1 Image Fusion
		1.10.2 Multi-wave and Interactive Imaging
	1.11 Conclusion
	References
	Bibliography
2 Overview
	2.1 Introduction
	2.2 Fourier Transform
		2.2.1 Introduction to the Fourier Transform
		2.2.2 Fourier Transform Relationships
	2.3 Building Blocks
		2.3.1 Time and Frequency Building Blocks
		2.3.2 Space Wave Number Building Block
			Spatial Transforms
			Spatial Transform of a Line Source
			Spatial Frequency Building Blocks
	2.4 Central Diagram
	References
3 Acoustic Wave Propagation
	3.1 Introduction to Waves
	3.2 Plane Waves in Liquids and Solids
		3.2.1 Introduction
		3.2.2 Wave Equations for Fluids
		3.2.3 One-dimensional Wave Hitting a Boundary
		3.2.4 ABCD Matrices
		3.2.5 Oblique Waves at a Liquid–Liquid Boundary
	3.3 Elastic Waves in Solids
		3.3.1 Types of Waves
		3.3.2 Equivalent Networks for Waves
		3.3.3 Waves at a Fluid–Solid Boundary
	3.4 Elastic Wave Equations
	3.5 Conclusion
	References
	Bibliography
4 Attenuation
	4.1 Losses in Tissues
		4.1.1 Losses in Exponential Terms and in Decibels
		4.1.2 Tissue Data
	4.2 Losses in Both Frequency and Time Domains
		4.2.1 The Material Transfer Function
		4.2.2 The Material Impulse Response Function
	4.3 Tissue Models
		4.3.1 Introduction
		4.3.2 The Time Causal Model
	4.4 Pulses in Lossy Media
		4.4.1 Scaling of the Material Impulse Response Function
		4.4.2 Pulse Propagation: Interactive Effects in Time and Frequency
		4.4.3 Pulse Echo Propagation
	4.5 Modified Hooke’s Laws and Tissue Models for Viscoelastic Media
		4.5.1 Voigt Model
		4.5.2 Time Causal Model
		4.5.3 Maxwell Model
		4.5.4 Thermoviscous Relaxation Model
		4.5.5 Multiple Relaxation Model
		4.5.6 Zener Model
		4.5.7 Fractional Zener and Kelvin–Voigt Fractional Derivative Models
	4.6 Wave Equations for Tissues
		4.6.1 Voigt Model Wave Equation
		4.6.2 Time Causal Model Wave Equations
		4.6.3 Time Causal Model Wave Equations in Fractional Calculus Form
	4.7 Discussion
		4.7.1 First Principles
		4.7.2 Power Law Wave Equation Implementations
		4.7.3 Transient Solutions for Power Law Media
		4.7.4 Green Functions for Power Law Media
		4.7.5 Shear Waves in Power Law Media
	4.8 Penetration and Time Gain Compensation
	References
5 Transducers
	5.1 Introduction to Transducers
		5.1.1 Transducer Basics
		5.1.2 Transducer Electrical Impedance
		5.1.3 Summary
	5.2 Resonant Modes of Transducers
		5.2.1 Resonant Crystal Geometries
		5.2.2 Determination of Electroacoustic Coupling Constants
		5.2.3 Array Construction
	5.3 Equivalent Circuit Transducer Model
		5.3.1 KLM Equivalent Circuit Model
		5.3.2 Organization of Overall Transducer Model
		5.3.3 Transducer at Resonance
	5.4 Transducer Design Considerations
		5.4.1 Introduction
		5.4.2 Insertion Loss and Transducer Loss
		5.4.3 Electrical Loss
		5.4.4 Acoustical Loss
		5.4.5 Matching Layers
		5.4.6 Design Examples
	5.5 Transducer Pulses
		5.5.1 Standard Pulse and Spectral Measurements
	5.6 Equations for Piezoelectric Media
	5.7 Piezoelectric Materials
		5.7.1 Introduction
		5.7.2 Normal Polycrystalline Piezoelectric Ceramics
		5.7.3 Relaxor Piezoelectric Ceramics
		5.7.4 Single-crystal Ferroelectrics
		5.7.5 Piezoelectric Organic Polymers
		5.7.6 Domain-engineered Ferroelectric Single Crystals
		5.7.7 Composite Materials
		5.7.8 Piezoelectric Gels
		5.7.9 Lead-free Piezoelectrics
	5.8 Comparison of Piezoelectric Materials
	5.9 Transducer Advanced Topics
		5.9.1 Internal Transducer Losses
		5.9.2 Trends in Transducer Modeling
		5.9.3 Matrix or 2D Arrays
		5.9.4 CMUT Arrays
		5.9.5 High-Frequency Transducers
	References
	Bibliography
6 Beamforming
	6.1 What is Diffraction?
	6.2 Fresnel Approximation of Spatial Diffraction Integral
	6.3 Rectangular Aperture
	6.4 Apodization
	6.5 Circular Apertures
		6.5.1 Near and Far Fields for Circular Apertures
		6.5.2 Universal Relations for Circular Apertures
	6.6 Focusing
		6.6.1 Introduction to Focusing
		6.6.2 Derivation of Focusing Relations
		6.6.3 Zones for Focusing Transducers
		6.6.4 Focusing Gain and Peak Pressure Values
		6.6.5 Depth of Field
		6.6.6 Scaling of Beams
		6.6.7 Focusing Summary
	6.7 Angular Spectrum of Waves
	6.8 Diffraction Loss
	6.9 Limited Diffraction Beams
	6.10 Holey Focusing Transducers
	References
	Bibliography
7 Array Beamforming
	7.1 Why Arrays?
	7.2 Diffraction in the Time Domain
	7.3 Circular Radiators in the Time Domain
	7.4 Arrays
		7.4.1 The Array Element
		7.4.2 Pulsed Excitation of an Element
		7.4.3 Array Sampling and Grating Lobes
		7.4.4 Element Factors
		7.4.5 Beam Steering
		7.4.6 Focusing and Steering
	7.5 Pulse–Echo Beamforming
		7.5.1 Introduction
		7.5.2 Beam-shaping
		7.5.3 Pulse–Echo Focusing
	7.6 Two-dimensional Arrays
	7.7 Baffled
	7.8 Computational Diffraction Methods
	7.9 Nonideal Array Performance
		7.9.1 Quantization and Defective Elements
		7.9.2 Sparse and Thinned Arrays
		7.9.3 1.5-dimensional Arrays
		7.9.4 Diffraction in Absorbing Media
		7.9.5 Body Effects
	7.10 Conformable and Deformable Arrays
	References
	Bibliography
8 Wave Scattering and Imaging
	8.1 Introduction
	8.2 Scattering of Objects
		8.2.1 Specular Scattering
		8.2.2 Diffusive Scattering
		8.2.3 Diffractive Scattering
			Frequency Domain Born Approximation
		8.2.4 Scattering Summary
	8.3 Role of Transducer Diffraction and Focusing
		8.3.1 Time Domain Born Approximation Including Diffraction
	8.4 Role of Imaging
		8.4.1 Imaging Process
		8.4.2 A Different Attitude
		8.4.3 Speckle
		8.4.4 Contrast
		8.4.5 Van Cittert–Zernike Theorem
		8.4.6 Speckle Reduction
		8.4.7 Speckle Tracking
	References
	Bibliography
9 Scattering From Tissue and Tissue Characterization
	9.1 Introduction
	9.2 Scattering from Tissues
	9.3 Properties of and Propagation in Heterogeneous Tissue
		9.3.1 Properties of Heterogeneous Tissue
		9.3.2 Propagation in Heterogeneous Tissue
	9.4 Array Processing of Scattered Pulse–Echo Signals
	9.5 Tissue Characterization Methods
		9.5.1 Introduction
		9.5.2 Fundamentals
		9.5.3 Backscattering Definitions
		9.5.4 The Classic Formulation
		9.5.5 Extensions of the Original Backscatter Methodology
		9.5.6 Integrated Backscatter
		9.5.7 Spectral Features
		9.5.8 Backscattering Comparisons
	9.6 Applications of Tissue Characterization
		9.6.1 Radiology and Ophthalmic Applications
		9.6.2 Cardiac Applications
		9.6.3 High-Frequency Applications
		9.6.4 Texture Analysis and Image Analysis
	9.7 Aberration Correction
		9.7.1 General Methods
		9.7.2 Time Reversal
		9.7.3 Focusing through the Skull
	9.8 Wave Equations for Tissue
	References
	Bibliography
10 Imaging Systems and Applications
	10.1 Introduction
	10.2 Trends in Imaging Systems
		10.2.1 General Commercial Systems
		10.2.2 New Developments
	10.3 Major Controls
	10.4 Block Diagram
	10.5 Major Modes
	10.6 Clinical Applications
	10.7 Transducers and Image Formats
		10.7.1 Image Formats and Transducer Types
		10.7.2 Transducer Implementations
		10.7.3 Multidimensional Arrays
	10.8 Front End
		10.8.1 Transmitters
		10.8.2 Receivers
	10.9 Scanner
		10.9.1 Beamformers
		10.9.2 Signal Processors
			Bandpass filters
			Matched filters
	10.10 Back End
		10.10.1 Scan Conversion and Display
		10.10.2 Computation and Software
	10.11 Advanced Signal Processing
		10.11.1 High-end Imaging Systems
		10.11.2 Attenuation and Diffraction Amplitude Compensation
		10.11.3 Frequency Compounding
		10.11.4 Spatial Compounding
		10.11.5 Real-time Border Detection
		10.11.6 Three- and Four-dimensional Imaging
	10.12 Alternate Imaging System Architectures
		10.12.1 Introduction
		10.12.2 Plane-wave Compounding
		10.12.3 Fourier Transform Imaging
		10.12.4 Synthetic Aperture Imaging
		10.12.5 Parallel Beamforming Archictectures
		10.12.6 Ultrasound Research Systems
			Verasonics System
			Ultrasonix imaging system
			Visualsonics imaging systems
			Other research systems
	References
	Bibliography
11 Doppler Modes
	11.1 Introduction
	11.2 The Doppler Effect
	11.3 Scattering from Flowing Blood in Vessels
	11.4 Continuous-Wave Doppler
	11.5 Pulsed-Wave Doppler
		11.5.1 Introduction
		11.5.2 Range-Gated Pulsed Doppler Processing
		11.5.3 Quadrature Sampling
		11.5.4 Final Filtering and Display
		11.5.5 Pulsed Doppler Examples
	11.6 Comparison of Pulsed- and Continuous-Wave Doppler
	11.7 Ultrasound Color Flow Imaging
		11.7.1 Introduction
		11.7.2 Phase-Based Mean Frequency Estimators
		11.7.3 Time-Domain-Based Estimators
		11.7.4 Implementations of Color Flow Imaging
		11.7.5 Power Doppler and Other Variants of Color Flow Imaging
		11.7.6 Previous Developments
	11.8 Non-Doppler Visualization of Blood Flow
	11.9 Doppler Revisited
		11.9.1 Doppler Methods Reviewed
		11.9.2 Doppler Methods Re-Examined
	11.10 Vector Doppler
		11.10.1 Introduction
		11.10.2 Transverse Oscillation Method
		11.10.3 Synthetic Aperture Flow Imaging
		11.10.4 Plane-Wave Flow Imaging
			Introduction
			Plane Wave Excitation for Vector Doppler Imaging
			Plane-Wave Compounding for Doppler Imaging
			Plane-Wave Investigations for Doppler Imaging
	11.11 Functional Ultrasound Imaging
	References
	Bibliography
12 Nonlinear Acoustics and Imaging
	12.1 Introduction
	12.2 What is Nonlinear Propagation?
	12.3 Propagation in a Nonlinear Medium with Losses
	12.4 Propagation of Beams in Nonlinear Media
	12.5 Harmonic Imaging
		12.5.1 Introduction
		12.5.2 Resolution
		12.5.3 Focusing
		12.5.4 Natural Apodization
		12.5.5 Body-Wall Effects
		12.5.6 Absorption Effects
		12.5.7 Harmonic Pulse Echo
	12.6 Harmonic Signal Processing
	12.7 Nonlinear Wave Equations and Simulation Models
	12.8 Acoustic Radiation Forces and Streaming
		12.8.1 Introduction
		12.8.2 Plane Understanding
		12.8.3 Particle Manipulation
		12.8.4 Acoustic Radiation Forces in Tissue
		12.8.5 Acoustic Streaming
		12.8.6 Summary
	References
	Bibliography
13 Ultrasonic Exposimetry and Acoustic Measurements
	13.1 Introduction to Measurements
	13.2 Materials Characterization
		13.2.1 Transducer Materials
		13.2.2 Tissue Measurements
		13.2.3 Measurement Considerations
	13.3 Transducers
		13.3.1 Impedance
		13.3.2 Pulse–Echo Testing
		13.3.3 Beam Plots
	13.4 Acoustic Output Measurements
		13.4.1 Introduction
		13.4.2 Hydrophone Characteristics
		13.4.3 Hydrophone Measurements of Absolute Pressure and Derived Parameters
		13.4.4 Optical Hydrophones
		13.4.5 Developments in Hydrophone Calibration
		13.4.6 Force Balance Measurements of Absolute Power
		13.4.7 Measurements of Temperature Rise
		13.4.8 Field Measurements Revisited: Projection Methods
	13.5 Performance Measurements
	13.6 High-intensity Acoustic Measurements
		13.6.1 HIFU Field Measurements
		13.6.2 HIFU Power Measurements
		13.6.3 HIFU Thermal Measurements
	13.7 Thought Experiments
	References
	Bibliography
14 Ultrasound Contrast Agents
	14.1 Introduction
	14.2 Microbubble as Linear Resonator
	14.3 Microbubble as Nonlinear Resonator
		14.3.1 Harmonic Response
		14.3.2 Subharmonic Response
	14.4 Cavitation and Bubble Destruction
		14.4.1 Rectified Diffusion
		14.4.2 Cavitation
		14.4.3 Mechanical Index
	14.5 Ultrasound Contrast Agents
		14.5.1 Basic Physical Characteristics of Ultrasound Contrast Agents
		14.5.2 Acoustic Excitation of Ultrasound Contrast Agents
		14.5.3 Mechanisms of Destruction of Ultrasound Contrast Agents
		14.5.4 Secondary Physical Characteristics of Ultrasound Contrast Agents
	14.6 Imaging with Ultrasound Contrast Agents
		14.6.1 Introduction
		14.6.2 Opacification
		14.6.3 Perfusion
		14.6.4 Other Methods
		14.6.5 Clinical Applications
	14.7 Therapeutic Ultrasound Contrast Agents: Smart Bubbles
		14.7.1 Introduction to Types of Agents
		14.7.2 Ultrasound-induced Bioeffects Related to Contrast Agents
		14.7.3 Targeted Contrast Agent Applications
	14.8 Equations of Motion for Contrast Agents
	14.9 Conclusion
	References
	Bibliography
15 Ultrasound-induced Bioeffects
	15.1 Introduction
	15.2 Ultrasound-induced Bioeffects: Observation to Regulation
	15.3 Thermal Effects
		15.3.1 Introduction to Thermal Tissue Response
		15.3.2 Heat Conduction Effects
		15.3.3 Absorption Effects
		15.3.4 Perfusion Effects
		15.3.5 Combined Contributions to Temperature Elevation
		15.3.6 Biologically Sensitive Sites
	15.4 Nonthermal Effects
	15.5 The Output Display Standard
		15.5.1 Origins of the Output Display Standard
		15.5.2 Thermal Indices
		15.5.3 Mechanical Index
		15.5.4 The ODS Revisited
	15.6 Ultrasound-induced Bioeffects: A Closer Look
		15.6.1 Introduction to Interrelated Bioeffects
		15.6.2 The Thermal Continuum
		15.6.3 Nonthermal Effects
		15.6.4 Microbubbles
		15.6.5 Combined Effects
	15.7 Comparison of Medical Ultrasound Modalities
		15.7.1 Introduction
		15.7.2 Ultrasound Physiotherapy
		15.7.3 Hyperthermia
		15.7.4 High-intensity Focused Ultrasound
		15.7.5 Lithotripsy
		15.7.6 Diagnostic Ultrasound Imaging
	15.8 Equations for Predicting Temperature Rise
	15.9 Conclusions
	References
	Bibliography
16 Elastography
	16.1 Introduction
	16.2 Elastography Physics
		16.2.1 Elastic Behavior: Longitudinal and Shear
		16.2.2 Viscoelastic Effects
		16.2.3 Strain Imaging
		16.2.4 Nonlinearity Effects
		16.2.5 Acoustic Radiation Forces
		16.2.6 Model-based Inversion
	16.3 Elastography Implementations
		16.3.1 Introduction
		16.3.2 1D Elastography
		16.3.3 Quasi-static Elastography
		16.3.4 Sonoelastography
		16.3.5 Shear Wave Elasticity Imaging
		16.3.6 Acoustic Radiation Impulse Imaging
		16.3.7 Vibro-acoustography Imaging
		16.3.8 Harmonic Motion Imaging
		16.3.9 Supersonic Shear Imaging
		16.3.10 Natural Imaging
	16.4 Conclusions
	References
	Bibliography
17 Therapeutic Ultrasound
	17.1 Introduction
	17.2 Therapeutic Ultrasound Physics
		17.2.1 Introduction
		17.2.2 High-intensity Focused Ultrasound
		17.2.3 Histotripsy and Hemostasis
		17.2.4 Cavitation-enhanced HIFU
		17.2.5 Monitoring
	17.3 Therapeutic Ultrasound Applications
		17.3.1 HIFU
			17.3.1.1 Introduction
			17.3.1.2 Extracorporeal HIFU
			17.3.1.3 Transrectal HIFU
		17.3.2 Transcranial Ultrasound
		17.3.3 Sonothrombolysis
		17.3.4 Cosmetic Ultrasound
		17.3.5 Lithotripsy
		17.3.6 Ultrasound-mediated Drug Delivery and Gene Therapy
		17.3.7 Ultrasound-induced Neurostimulation
		17.3.8 Bone and Wound Healing
	17.4 Conclusions
	References
Appendix A: The Fourier Transform
	A.1 Introduction
	A.2 The Fourier Transform
		A.2.1 Definitions
		A.2.2 Fourier Transform Pairs
		A.2.3 Fundamental Fourier Transform Operations
		A.2.4 The Sampled Waveform
		A.2.5 The Digital Fourier Transform
		A.2.6 Calculating a Fourier Transform with an FFT
		A.2.7 Calculating an Inverse Fourier Transform and a Hilbert Transform with an FFT
		A.2.8 Calculating a Two-dimensional Fourier Transform with FFTs
	References
	Bibliography
Appendix B
	References
Appendix C: Development of One-Dimensional KLM Model Based on ABCD Matrices
	References
Appendix D: List of Groups Interested in Medical Ultrasound
Index




نظرات کاربران