دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: پزشکی بالینی ویرایش: نویسندگان: Dance D.R., Christofides S., Maidment A.D.A., McLean I.D., Ng K.H. (Tech. Ed.) سری: ناشر: سال نشر: تعداد صفحات: 710 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
کلمات کلیدی مربوط به کتاب فیزیک رادیولوژی تشخیصی: کتابچه راهنمای معلمان و دانشجویان: رشته های پزشکی، روش های بالینی تشخیص، تشخیص آزمایشگاهی، تشخیص و پرتودرمانی
در صورت تبدیل فایل کتاب Diagnostic radiology physics: A handbook for teachers and students به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب فیزیک رادیولوژی تشخیصی: کتابچه راهنمای معلمان و دانشجویان نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Vienna: International Atomic Energy Agency, 2014, 682 p,
ISBN–92–131010–1.
This handbook is intended to provide the basis for the
education of medical physicists initiating their university
studies in the field of diagnostic radiology. This has been
achieved with the contributions of authors and reviewers from
different countries. The chapters include a broad coverage of
topics relevant to diagnostic radiology physics, including
radiation physics, dosimetry and instrumentation, image quality
and image perception, imaging modality specific topics, recent
advances in digital techniques, and radiation biology and
protection. The handbook is not designed to replace the large
number of textbooks available on many aspects of diagnostic
radiology physics, which will still be necessary to deepen
knowledge in the specific topics reviewed here. It is expected
that this handbook will successfully fill a gap in the teaching
material for medical radiation physics in imaging, providing,
in a single volume, the largest possible coverage available
today. Its wide dissemination by the IAEA will contribute to
the harmonization of education in diagnostic radiology physics
and will be the source reference for much of the IAEA clinical
training programmes in the field. It will be of value to those
preparing for their certification as medical physicists,
radiologists and diagnostic radiographers.
Fundamentals of atomic and nuclear
physics.
Classification of Radiation.
Atomic and nuclear structure.
X rays.
Interactions of radiation with matter.
Interactions of photons with matter.
Photon attenuation coefficients.
Interactions of electrons with matter.
Data sources.
Fundamentals of dosimetry.
Quantities and units used for describing the interaction of
ionizing radiation with matter.
Charged particle equilibrium in dosimetry.
Cavity theory.
Practical dosimetry with ion chambers.
Measures of image quality.
Image theory fundamentals.
Contrast.
Unsharpness.
Noise.
Analysis of signal and Noise.
X ray production.
Fundamentals of x ray production.
X ray tubes.
Energizing and controlling the X ray tube.
X ray tube and generator ratings.
Collimation and filtration.
Factors influencing X ray spectra and output.
Filtration.
Projection radiography.
X ray image formation.
Scattered radiation in projection radiography.
Receptors for projection radiography.
General properties of receptors.
Film and screen film systems.
Digital receptors.
Fluoroscopic imaging systems.
Fluoroscopic equipment.
Imaging performance and equipment configuration.
Adjunct imaging modes.
Application specific design.
Auxiliary topics.
DOSIMETRIC considerations in fluoroscopy.
Mammography.
Radiological requirements for mammography.
X ray equipment.
Image receptors.
Breast tomosynthesis.
Breast CT.
Computer aided diagnosis.
Stereotactic biopsy systems.
Radiation dose.
Special topics in radiography.
Dental radiography.
Mobile radiography and fluoroscopy.
DXA.
Conventional tomography and tomosynthesis.
Computed tomography.
Principles of CT.
The CT imaging system.
Image reconstruction and processing.
Acquisition.
CT image quality.
Physics of ultrasound.
Ultrasonic plane waves.
Ultrasonic properties of biological tissue.
Ultrasonic transduction.
Doppler physics.
Biological effects of ultrasound.
Ultrasound imaging.
Array system principles.
B-mode instrumentation and signal processing.
Modern imaging methods.
Colour flow imaging.
Image artefacts and quality assurance.
Physics of magnetic resonance.
NMR.
Relaxation and tissue contrast.
MR spectroscopy.
Spatial encoding and basic pulse sequences.
Magnetic resonance imaging.
Hardware.
Basic image quality issues.
MR image acquisition and reconstruction.
Artefacts.
Safety and bioeffects.
Digital imaging.
Image encoding and display.
Digital image management.
Networking.
Image compression.
Image post-processing and analysis.
Deterministic image processing and feature enhancement.
Image segmentation.
Image registration.
Open source tools for image analysis.
Image perception and assessment.
The human visual system.
Specifications of observer performance.
Experimental methodologies.
Observer models.
Quality management.
QMS requirements.
QA programme for equipment.
Example of a QC Programme.
Data management.
Radiation biology.
Radiation injury to deoxyribonucleic acid.
DNA repair.
Radiation induced chromosome damage and biological
dosimetry.
The cell cycle.
Survival curve theory.
Concepts of cell death.
Cellular recovery processes.
Relative biological effectiveness.
Carcinogenesis (stochastic).
Radiation injury to tissues (deterministic).
Radiation pathology: acute and late effects.
Radiation genetics: radiation effects on fertility.
Fetal irradiation.
Instrumentation for dosimetry.
Radiation detectors and dosimeters.
Ionization chambers.
Semiconductor dosimeters.
Other dosimeters.
Dosimeter calibration.
Instruments for measuring tube voltage and time.
Instruments for occupational and public exposure
measurements.
Patient dosimetry.
Application specific quantities.
Risk related quantities.
Measuring application specific quantities.
Estimating risk related quantities.
Dose management.
Justification and optimization in clinical
practice.
Justification.
Optimization.
Clinical audit.
Radiation protection.
The ICRP system of radiological protection.
Implementation of radiation protection in the radiology
facility.
Medical exposures.
Occupational exposure.
Public exposure in radiology practices.