دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 2 نویسندگان: Mohammad A. Tabrizi, Gadi G. Bornstein, Scott L. Klakamp سری: ISBN (شابک) : 9811304955, 9789811304958 ناشر: Adis سال نشر: 2018 تعداد صفحات: 255 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 8 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Development of Antibody-Based Therapeutics: Translational Considerations & Challenges به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب توسعه درمان های مبتنی بر آنتی بادی: ملاحظات و چالش های ترجمه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
With a key focus on recent developments and advances in the field, this book provides in-depth coverage of topics fundamental to the development of targeted therapeutics. The expansion of targeted modalities in rapidly evolving therapeutic areas, such as immune-oncology, and developments with respect to combination therapies, novel technologies, and the therapeutic application of antibody-drug conjugates, are presented. Additionally, the book builds upon topics discussed in the first edition (2012) where recent innovations warrant elaboration. This, the second edition of Development of Antibody-Based Therapeutics: Translational Considerations, represents a comprehensive evaluation of progress in the field, which sits alongside the first edition to inform, in detail, professional and academic researchers, as well as graduate students. From the Back Cover With a key focus on recent developments and advances in the field, this book provides in-depth coverage of topics fundamental to the development of targeted therapeutics. The expansion of targeted modalities in rapidly evolving therapeutic areas, such as immune-oncology, and developments with respect to combination therapies, novel technologies, and the therapeutic application of antibody-drug conjugates, are presented. Additionally, the book builds upon topics discussed in the first edition (2012) where recent innovations warrant elaboration. This, the second edition of Development of Antibody-Based Therapeutics: Translational Considerations, represents a comprehensive evaluation of progress in the field, which sits alongside the first edition to inform, in detail, professional and academic researchers, as well as graduate students. Mohammad A. Tabrizi, Ph.D. is a leader in translational sciences as related to development of antibody-based therapeutics. His product development experience spans many therapeutic areas including oncology and inflammatory disease, and his technical expertise includes preclinical pharmacology and safety, preclinical and clinical pharmacokinetics, pharmacodynamics, GLP-compliant bioanalytics, and clinical pharmacology of therapeutic monoclonal antibodies. Gadi Bornstein, Ph.D. has over seventeen years of experience in Oncology R&D with an emphasis in preclinical antibody discovery and development. Dr. Bornstein currently leads and directs biologics discovery efforts at TESARO. He received his B.S. in biochemistry at the University of California, Davis and his doctoral degree in biochemistry at the University of Southern California Keck School of Medicine. Dr. Bornstein completed his postdoctoral training at Stanford University in the Division of Immunology and Rheumatology. Following his postdoctoral training, Dr. Bornstein joined Amgen Fremont, Inc. (formerly Abgenix, Inc.) as a Staff Scientist in the Preclinical Oncology department. Dr. Bornstein has held roles of increasing responsibility at AstraZeneca, Pfizer, and Novartis, where he was a project team leader, lead biologist, and key contributor to scientific strategies for multiple oncology programs. Dr. Bornstein has authored numerous research papers, reviews, as well as book chapters, and is a co-inventor on multiple patents. Scott L. Klakamp, Ph.D. is one of the leading scientists in utilizing Surface Plasmon Resonance (SPR) and KinExA® to measure the binding kinetics and equilibrium dissociation constants of human monoclonal antibody/antigen complexes. He was the founder of SKD Consulting LLC and acted as Principal Consultant at that company during the development of this title. Prior to SKD Consulting LLC, he was the Vice President of Chemistry and Biochemistry at BiOptix Inc., a company that provided the 404pi biosensor. Dr. Klakamp has also held positions of increasing responsibility in the areas of analytical and biophysical characterization at Chiron, Amgen/Abgenix, AstraZeneca/MedImmune, and Takeda Pharmaceuticals. Dr. Klakamp has been an author on over 30 research and review papers, book chapters, and patents. He has also been an invited speaker at numerous international and national meetings. Dr. Klakamp received his B.A. in Chemistry from Houghton College and his PhD in Chemistry at the Pennsylvania State University. From 1990 to 1993, he completed a postdoctoral fellowship (funded by a National Research Service Award from the National Institutes of Health) at the California Institute of Technology in bioinorganic chemistry. About the Author Mohammad A. Tabrizi, Ph.D. is a leader in translational sciences as related to development of antibody-based therapeutics. His product development experience spans many therapeutic areas including oncology and inflammatory disease, and his technical expertise includes preclinical pharmacology and safety, preclinical and clinical pharmacokinetics, pharmacodynamics, GLP-compliant bioanalytics, and clinical pharmacology of therapeutic monoclonal antibodies. Gadi G. Bornstein, Ph.D. has nearly twenty years of experience in Oncology R&D with an emphasis in preclinical antibody discovery and development. Dr. Bornstein currently leads and directs biologics discovery efforts at TESARO. He received his B.S. in biochemistry at the University of California, Davis and his doctoral degree in biochemistry at the University of Southern California Keck School of Medicine. Dr. Bornstein completed his postdoctoral training at Stanford University in the Division of Immunology and Rheumatology. Following his postdoctoral training, Dr. Bornstein joined Amgen Fremont, Inc. (formerly Abgenix, Inc.) as a Staff Scientist in the Preclinical Oncology department. Dr. Bornstein has held roles of increasing responsibility at AstraZeneca, Pfizer, and Novartis, where he was a project team leader, lead biologist, and key contributor to scientific strategies for multiple oncology programs. Dr. Bornstein has authored numerous research papers, reviews, as well as book chapters, and is a co-inventor on multiple patents. Scott L. Klakamp, Ph.D. is one of the leading scientists in utilizing Surface Plasmon Resonance (SPR) and KinExA® to measure the binding kinetics and equilibrium dissociation constants of human monoclonal antibody/antigen complexes. He was the founder of SKD Consulting LLC and acted as Principal Consultant at that company during the development of this title. Prior to SKD Consulting LLC, he was the Vice President of Chemistry and Biochemistry at BiOptix Inc., a company that provided the 404pi biosensor. Dr. Klakamp has also held positions of increasing responsibility in the areas of analytical and biophysical characterization at Chiron, Amgen/Abgenix, AstraZeneca/MedImmune, and Takeda Pharmaceuticals. Dr. Klakamp has been an author on over 30 research and review papers, book chapters, and patents. He has also been an invited speaker at numerous international and national meetings. Dr. Klakamp received his B.A. in Chemistry from Houghton College and his PhD in Chemistry at the Pennsylvania State University. From 1990 to 1993, he completed a postdoctoral fellowship (funded by a National Research Service Award from the National Institutes of Health) at the California Institute of Technology in bioinorganic chemistry.
Contents......Page 5
Contributors......Page 7
1: Introduction......Page 9
1.1 Prelude......Page 10
2: Translational Considerations and Challenges: An Overview......Page 13
2.1 Introduction......Page 14
2.2 Monoclonal Antibodies......Page 17
2.3 Antibody-Drug Conjugates......Page 20
2.4 Multi-Specific Constructs......Page 22
References......Page 25
3: Considerations for Construct and Affinity Design Goals......Page 27
3.1 Introduction......Page 28
3.2 Affinity Limits......Page 29
3.3 Affinity vs. Avidity......Page 30
3.5.1 Soluble Antigens......Page 35
3.5.2 Membrane-Associated (MA) Antigens......Page 36
3.6.1 Receptor Inhibition......Page 39
3.6.2 Receptor Activation......Page 41
3.6.3 Pharmacodynamic (PD) System Efficiency and Affinity Design......Page 42
3.7.1 A Multi-specific Construct for Autoregulation of Construct Activity via a “Competitive Clearance Process”......Page 43
3.7.2 Multi-specificity and Impact on Receptor Turnover Rate......Page 45
3.8 Summary......Page 46
References......Page 47
4.1 Introduction......Page 49
4.2.1 X-Ray Crystallography......Page 50
4.2.2 NMR and Epitope Mapping......Page 51
4.2.3 Comparisons Between X-Ray and NMR......Page 53
4.2.4.3 Computational Protein Docking......Page 54
4.2.5 Hydrogen-Deuterium Exchange (HDE) Mass Spectrometry (MS)......Page 56
4.2.6 Other Relevant Methods......Page 58
4.3.2 Different Epitopes on the Same Protein: Impact on Pharmacokinetics......Page 59
4.3.3 Different Epitopes on the Same Protein: Impact on Neutralizing Activity......Page 61
4.3.4 Structural Diversity: Implications for Receptor Recognition......Page 63
4.3.5 Blocking Antibodies......Page 65
4.3.6 Agonists......Page 66
4.3.7 Action at a Distance: Effect of Fc Isotypes on Antigen-Binding Affinity......Page 67
4.4 Epitopes and Intellectual Property......Page 71
References......Page 73
5: Biophysical Considerations for Development of Antibody-Based Therapeutics......Page 78
5.1 Introduction......Page 79
5.2 Biacore Technology......Page 81
5.2.1 Biacore Experimental Design......Page 83
5.2.2.1 Avoiding Mass Transport......Page 86
5.2.2.2 Antigen Concentration......Page 87
5.2.2.3 Biacore Surface Regeneration......Page 89
5.2.2.4 Double-Referencing Data......Page 90
5.2.2.6 Complex Data......Page 91
5.2.2.7 SPR and Bispecific Antibodies......Page 92
5.2.3.1 Low Resolution Screening......Page 93
5.2.3.2 Medium Resolution Experiments......Page 96
5.2.3.3 High-Resolution Experiments......Page 98
5.2.4.1 Functional Significance of Epitope......Page 100
5.2.4.3 Epitope Binning Using Label-Free Biosensors......Page 101
5.2.4.4 Visualizing the Results from an Epitope Binning Experiment......Page 102
5.2.4.5 Epitope Binning Assays Can Be Performed in Various Assay Formats......Page 103
Premix Assay Format......Page 104
Classical Sandwich Assay Format......Page 105
5.2.4.7 Higher Throughput Label-Free Platforms Enable Higher Resolution of Epitope Diversity......Page 106
5.3 KinExA Technology......Page 108
5.3.2 KD-Controlled and Antibody-Controlled KinExA Equilibrium Titrations......Page 110
5.3.3 KinExA Kinetic Measurements......Page 111
5.3.4 KinExA Experimental Methods......Page 112
5.3.5 Antibody Intramolecular Binding Cooperativity......Page 114
5.3.6 KinExA and Biacore Comparison......Page 115
5.3.8 High-Throughput Solution-Based Equilibrium Methods......Page 120
5.4 Cell-Based Affinity Assays......Page 121
5.4.2 FACS Affinity Measurement......Page 122
5.4.2.1 Linear and Nonlinear FACS Data Analysis......Page 123
5.4.2.3 A Four-Parameter Nonlinear FACS Fitting Model......Page 124
5.4.2.4 A Traditional Three-Parameter Model Compared to the Four-Parameter Model......Page 126
5.4.2.5 Experimental Methods for FACS KD Measurements......Page 130
5.4.2.6 Interpretation of Cell-Based KD Measurements......Page 131
5.5 Concluding Remarks......Page 133
References......Page 134
6.1 Introduction......Page 140
6.2 Bispecific Formats: Engineering and Developability......Page 141
6.2.1.1 Antibodies Derived from Quadroma Technology......Page 142
6.2.1.3 CH3 Mutations for Efficient Heavy Chain Pairing......Page 143
6.2.1.4 Solving HC/LC Pairing......Page 145
6.2.1.5 Appended IgGs......Page 146
6.3 Protein and Antibody Fragments......Page 147
6.3.2 Single-Domain Antibodies (VHHs, Nanobodies)......Page 148
6.3.3 Non-antibody Protein Scaffolds......Page 149
6.3.4 Non-antibody Scaffolds: Opportunities and Challenges......Page 150
6.4 Selection Criteria......Page 151
6.5.1 CNS Penetration......Page 152
6.5.3 CD3-Mediated Redirected Killing......Page 153
6.5.4 Other Applications......Page 154
References......Page 163
7.1 Introduction......Page 168
7.2 Stimulus-Response Mechanisms......Page 169
7.3 Indirect Response Models......Page 171
7.4.1 Semi-mechanistic Modeling in Treatment of Psoriasis......Page 173
7.4.2 RANK Ligand Modulation......Page 174
References......Page 176
8.1 Introduction......Page 178
8.2.1 Comparison of Tumor Size at a Single Time Point......Page 179
8.2.3 Evaluation of Tumor Doubling Time......Page 180
8.2.5 Unperturbed Growth Rate......Page 181
8.2.6 Quantitative Exposure-Response Approaches......Page 182
8.3 Antibody Drug Conjugate......Page 183
8.4.1 Immunotherapy Combinations......Page 185
8.4.2 Quantitative Methods to Evaluate Drug Combination/Interaction......Page 186
8.4.3 Evaluation of Drug Interactions for Tumor Growth Inhibition......Page 187
8.5.2 Combination Therapy......Page 189
References......Page 191
9.1 Introduction......Page 194
9.2 Translational Approach......Page 195
9.3 Experimental Model......Page 197
9.5 Case Study......Page 199
9.6 Summary......Page 201
References......Page 203
10.1 Introduction......Page 204
10.2.1 Evaluation of Relevant Species......Page 206
10.2.2.1 Target......Page 207
10.2.2.3 Payload......Page 209
10.3 Case Study......Page 210
References......Page 212
11.1 Introduction......Page 214
11.2 Preclinical Application......Page 215
11.3 Case Studies: Preclinical Application......Page 216
11.4 Clinical Application......Page 221
11.5 Optimization......Page 226
References......Page 227
12: Translational Biomarkers: Application in the Clinical Development of Combination Therapies......Page 230
12.1 Introduction......Page 231
12.2 Combination Studies in Cancer Immunotherapy......Page 233
12.3 Case Studies......Page 234
12.4 Pharmacodynamic (PD) Markers......Page 236
12.5 Safety Markers......Page 238
12.6 Predictive or Patient Stratification Biomarkers......Page 239
12.7 Predictive Biomarkers in Cancer Immunotherapy......Page 240
12.8.1 Evaluation of T-Cell Repertoire......Page 243
12.8.2 Neo-Antigen Discovery......Page 245
12.8.4 Multicolor Immunohistochemistry......Page 246
12.9 Translational and Experimental Medicine......Page 247
12.10 Biomarker Strategy and Clinical Trials......Page 248
References......Page 250