دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: تصفیه آب ویرایش: نویسندگان: Maulin P. Shah, Susana Rodriguez-Couto سری: ISBN (شابک) : 0323919014, 9780323919012 ناشر: Elsevier سال نشر: 2022 تعداد صفحات: 488 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 13 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Development in Wastewater Treatment Research and Processes: Microbial Ecology, Diversity and Functions of Ammonia Oxidizing Bacteria به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب توسعه در تحقیقات و فرآیندهای تصفیه فاضلاب: اکولوژی میکروبی، تنوع و عملکرد باکتریهای اکسیدکننده آمونیاک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
توسعه در تحقیقات و فرآیندهای تصفیه فاضلاب: محیط زیست میکروبی، تنوع و عملکرد باکتری های اکسید کننده آمونیاک تحقیقات به روز در مورد باکتری های اکسید کننده آمونیاک و کاربرد آنها برای حذف نیتروژن آمونیاکی از فاضلاب را پوشش می دهد. تصفیه خانه ها (WWTP)، در مورد شکاف های باقی مانده در زیست شناسی و عملکرد آنها بحث می کنند. از این نظر، این کتاب استفاده از ابزارهای omics جدید توسعه یافته را به منظور توسعه فرآیندهای بیولوژیکی کم انرژی و مقرون به صرفه برای حذف نیتروژن از WWTPها نشان می دهد. این باعث می شود این کتاب به یک کتاب ضروری و منحصر به فرد برای دانش آموزان پیشرفته، دانشمندان تحقیقاتی، آژانس های محیط زیست و صنایع درگیر در تصفیه فاضلاب تبدیل شود.
Development in Wastewater Treatment Research and Processes: Microbial Ecology, Diversity and Functions of Ammonia Oxidizing Bacteria covers up-to-date research on ammonia oxidizing bacteria and their application for the removal of ammonia nitrogen from wastewater treatment plants (WWTPs), discussing remaining gaps in their biology and functions. In this sense, this book features the application of the newly developed omics tools in order to develop less energy intensive and cost-effective biological processes for nitrogen removal from WWTPs. This makes this book an essential and unique book for advanced students, research scientists, environmental agencies and industries involved in wastewater treatment.
Front Cover Development in Wastewater Treatment Research and Processes: Microbial Ecology, Diversity, and Functions of Ammonia-Oxidizi ... Copyright Contents Contributors Chapter 1: Anammox process: An innovative approach and a promising technology 1.1. Introduction 1.2. Mechanism of anammox process 1.3. Role of microorganisms in anammox 1.4. Role of various parameters on anammox 1.4.1. Ammonium 1.4.2. Nitrite 1.4.3. Organic matter 1.5. The limitations and solutions of the anammox system 1.6. Conclusion Conflict of interest References Chapter 2: Abundance of ammonia-oxidizing bacteria and archaea in industrial wastewater treatment systems 2.1. Introduction 2.2. Key enzymes involved 2.3. Physiology and cellular structure 2.3.1. Physiology of AOA 2.3.1.1. Kinetics stoichiometry of ammonia oxidation 2.3.2. Physiology of AOB 2.4. Diversity in WWTPs 2.4.1. Diversity of AOA 2.4.2. Diversity of AOB 2.5. Mechanism of action of AOA and AOB 2.5.1. Mechanism of AOA 2.5.2. Mechanism of AOB 2.6. Competition and symbiotic relationships between AOMs 2.7. AOA at low DO or in special WWTPs 2.8. Factors influencing AOB abundance and diversity 2.8.1. Ammonia levels 2.8.2. FNA and nitrite 2.8.3. Process conditions and regime 2.9. Quantification techniques 2.9.1. DNA extraction 2.9.2. Quantitative PCR and reverse transcriptional qPCR 2.9.3. High throughput sequencing 2.9.4. Phylogenetic analysis 2.10. Environmental factors affecting AOA and AOB 2.10.1. Ammonia concentration 2.10.2. Temperature 2.10.3. Oxygen and aeration pressure 2.10.4. Organic loading 2.10.5. Salinity 2.10.6. DO 2.10.7. Sulfide 2.11. Future perspectives 2.12. Conclusion References Chapter 3: Autotrophic nitrification in bacteria 3.1. Introduction 3.2. Symbiotic nitrogen fixers 3.2.1. Molecular mechanism of endosymbionts 3.2.2. Molecular mechanism of nodule formation 3.2.3. Mechanism of exchange of nutrients and nitrogen 3.3. Events of nitrogen fixation 3.3.1. Nitrification 3.3.2. Nitrate and nitrite synthesis during nitrification 3.3.3. Hydroxylamine oxidoreductase 3.3.4. Nitrous oxide production during nitrification 3.4. Genetic regulation of nitrogen fixation 3.5. Understanding the balance between Photosynthesis and nitrogen fixation 3.5.1. Nitrogen fixation by cyanobacteria 3.5.2. Nitrogen fixation by rhizobia 3.5.2.1. Nitrogenase and its mode of action 3.5.3. Role of abiotic factors in BNF 3.6. Conclusion and future aspect References Chapter 4: Omics: A revolutionary tool to study ammonia-oxidizing bacteria and their application in bioremediation 4.1. Introduction 4.2. Chemolitho-autotrophic ammonia oxidation 4.3. Role of ammonia-oxidizing bacteria in nitrogen cycling 4.4. Commercial significance and application of ammonia-oxidizing bacteria 4.5. Difficulties associated with nitrification and ammonia-oxidizing bacteria 4.6. Isolation of ammonia-oxidizing bacteria from the environment 4.7. Cultivation of new ammonia oxidizers 4.8. Genomics and metabolic models 4.9. Terminology of environmental proteomics 4.10. Microbial culture proteomic studies techniques 4.11. Potential applications of environmental proteomics 4.12. Enzymology of ammonia-oxidation 4.13. Ammonia-oxidizers in the environment and production of N2O 4.14. Remediation of recalcitrant pollutants 4.15. Conclusion References Chapter 5: Diversity of ammonia-oxidizing bacteria 5.1. Introduction 5.2. Emission of nitrous oxide 5.2.1. Potential sources 5.2.2. Yield 5.3. Niche differentiation 5.3.1. Oligotrophy 5.3.2. pH 5.4. Conclusion References Chapter 6: Aerobic and anaerobic ammonia oxidizing bacteria 6.1. Introduction 6.2. Ammonia-oxidizing bacteria 6.2.1. Ecology 6.2.2. Environmental regulators of ammonia oxidation 6.2.3. Strategic functional, anatomical, and biological differentiations among ammonia oxidizers 6.3. Anaerobic ammonium oxidation bacteria 6.3.1. Ecology 6.3.1.1. Geographical distribution 6.3.1.2. Geochemical importance and important environmental constituents 6.3.2. Physiology of anammox bacteria 6.4. Microbial interactions and their contribution to enhanced nitrogen removal 6.5. Conclusion References Chapter 7: Recent advances in biological nitrogen removal from wastewater: Special focus on reactor configuration and nan ... 7.1. Introduction 7.2. Chemolithotrophs and their diversity 7.2.1. Obligate chemolithotroph bacteria 7.2.2. Facultative chemolithotroph bacteria 7.2.3. Sulfur-oxidizing bacteria 7.2.4. Ammonium-oxidizing bacteria 7.2.5. Nitrite-oxidizing bacteria 7.2.6. Methane-oxidizing bacteria or methanotrophs 7.2.7. Ferrous-oxidizing bacteria 7.2.8. Hydrogen-oxidizing bacteria 7.3. BNR technologies for wastewater treatment 7.3.1. Nitrification/denitrification 7.3.2. Nitritation/denitritation 7.3.3. Sidestream partial nitritation/anammox 7.3.4. Mainstream partial nitritation/anammox 7.3.5. Nitrogen recovery 7.3.6. Phototrophic systems 7.3.7. Microbial electrochemical cells 7.4. Advances in the nitrification process 7.4.1. Sequencing batch reactor 7.4.2. Activated sludge models 7.5. Effect of nanomaterials on microbial nitro-transformation 7.6. Conclusion and future perspective References Chapter 8: Diversity of nitrogen-removing microorganisms 8.1. Introduction 8.2. Nitrogen removal by microorganisms that use sulfur compounds as electron donor 8.2.1. Autotrophic denitrifying sulfur-oxidizing bacteria 8.2.2. Growth conditions of ADSOB 8.2.3. Metabolic pathways involved in sulfur compound oxidation 8.2.4. Molecular tools for assessing microbial diversity in SDAD processes 8.2.5. Technologies used to carry out the SDAD process to treat wastewaters 8.2.6. Relevant operating conditions in the SDAD process to treat wastewaters 8.2.7. Projections of using the SDAD process to remove nitrogen in wastewaters 8.3. Nitrogen removal by microorganisms that use hydrogen as electron donor: Hydrogenotrophic denitrification 8.3.1. Nitrate removal pathway and hydrogen as electron donor 8.3.2. Microorganisms and microbial community involved in the process 8.3.3. Basis of operational conditions 8.3.4. Possibilities and available technologies for large-scale application 8.4. Nitrogen removal by anaerobic nitrate-dependent methanotrophic microorganisms 8.4.1. Nitrogen removal pathways and ecosystem distribution of the different types of microorganisms 8.4.2. Activity and factors affecting the enrichment of these microorganisms 8.4.3. Molecular tools for assessing microbial diversity 8.4.4. Application possibilities in sewage and industrial wastewater treatment plants-Main operating conditions description Acknowledgments References Chapter 9: An overview of the anammox process 9.1. Introduction 9.2. The evolution of anammox reaction stoichiometry 9.3. The existing problems and countermeasures for anammox process application 9.3.1. The rapid start-up and recovery of anammox-based process 9.3.2. The retention of anammox sludge in the reactor 9.3.3. The further improvement of NRE 9.4. The status of several main anammox-related processes 9.4.1. Nitritation process 9.4.2. Pure anammox process 9.4.3. PNA process 9.4.3.1. One-stage PNA and two-stage PNA 9.4.3.2. The comparison of the one-stage and two-stage PNA process 9.4.4. Simultaneous nitrogen removal and phosphorus recovery process 9.4.5. Denitratation/anammox process 9.4.6. DAMO/anammox process 9.5. Conclusion References Chapter 10: Aerobic and anaerobic ammonia-oxidizing bacteria: A resilient challenger or innate collaborator 10.1. Introduction 10.2. Physiology and ecology of ammonia-oxidizing bacteria 10.2.1. Ecology of ammonia-oxidizing bacteria 10.2.2. Physiology of ammonia-oxidizing bacteria 10.2.3. Biodiversity of aerobic and anaerobic oxidizing bacteria 10.2.4. Species diversity 10.3. Factors affecting aerobic and anaerobic oxidizing bacteria 10.3.1. Ammonia levels 10.3.2. Organic carbon 10.3.3. Temperature 10.3.4. Salinity 10.3.5. DO levels 10.3.6. pH 10.3.7. Sulfide levels 10.3.8. Phosphate 10.4. Role of aerobic and anaerobic ammonia-oxidizing bacteria in wastewater treatment plants 10.5. Application of anammox in wastewater treatment 10.5.1. Advantages 10.5.2. Disadvantages 10.6. Ammonia-oxidizing microorganisms: Key players in the promotion of plant growth 10.6.1. Autotrophic nitrification 10.6.2. Heterotrophic nitrification 10.6.3. Diversity of ammonia oxidizers 10.7. Mechanism of ammonia oxidation by ammonia-oxidizing microorganisms 10.8. Function and activity of ammonia-oxidizing microbes in different soil types 10.8.1. pH 10.8.2. Bioavailability of nutrients 10.8.3. Temperature 10.8.4. Soil water content 10.9. Conclusion References Chapter 11: A technique to boost the nitrogen-rich agricultural ecosystems efficiency by anaerobic ammonium oxidation (an ... 11.1. Introduction 11.2. Role of anaerobic ammonium oxidation in nitrogen cycle 11.3. Diversity and richness of anammox bacteria 11.4. Uncovering anammox bacteria and its reaction 11.5. Role of anammox in agricultural soil 11.5.1. Anammox in paddy soil 11.5.2. Anammox in arable high grounded soil 11.5.3. Anammox in special sites 11.5.3.1. Rhizosphere 11.5.3.2. Surface soil 11.6. Factors affecting anammox 11.6.1. Nitrate, nitrite, and ammonium 11.6.2. Salinity and pH of the soil 11.6.3. Rhizosphere effect 11.7. Outlook for anammox research and concluding remarks 11.8. Future prospects Acknowledgments References Chapter 12: Genomics of ammonia-oxidizing bacteria and denitrification in wastewater treatment plants 12.1. Introduction 12.2. Nitrogen cycle 12.3. Role of ammonia-oxidizing bacteria (AOB) and ammonia-oxidizing archaea (AOA) in nitrogen cycle 12.4. Factors that influence AOM abundance and distribution 12.5. Other ammonia-oxidizing microorganisms in wastewater treatment 12.6. Genetic regulation for ammonia oxidation by AOMs 12.6.1. Genes involved in the oxidation of ammonia to hydroxylamine 12.6.2. Genes involved in the oxidation of hydroxylamine to nitric oxide and further to nitrite 12.6.3. Genes involved in the direct oxidation of ammonia to nitrate 12.7. Gene amoA as a functional marker for AOM 12.7.1. Evolutionary relation of AMO and pMMO 12.8. Denitrification 12.8.1. Nitrate reduction to nitrite 12.8.2. Nitrite reduction to nitric oxide 12.8.3. Nitric oxide reduction to nitrous oxide 12.8.4. Nitrous oxide reduction to molecular nitrogen 12.9. Nitrifier denitrification 12.10. Conclusions References Chapter 13: Genomic modules of the nitrifying and denitrifying bacterial population in the aerated wastewater tre 13.1. Introduction 13.2. Microbial association and biofilm formation in the aerated bioreactors 13.3. Mutualism between the microbial communities 13.4. Factors influencing the microbial shift 13.4.1. Substrate availability 13.4.2. Carbon-nitrogen (C/N) ratio 13.4.3. Dissolved oxygen (DO) concentration 13.4.4. Temperature 13.4.5. pH 13.5. Population dynamics of the bacterial groups 13.5.1. Functional plasticity and functional redundancy 13.6. Microbial community in the biofilm 13.7. Heterotrophic nitrification and aerobic denitrification 13.8. Functional genomics of the microbial community 13.8.1. Nitrifiers 13.8.2. Comammox 13.8.3. Anammox 13.8.4. Denitrifiers 13.9. Molecular approaches and bioinformatics tools-Dynamics of the microbial population 13.10. Conclusion References Chapter 14: Influence of the different operational strategies on anammox processes for the sustainable ammonium wastew 14.1. Introduction 14.2. Microorganisms involved in the anammox process 14.3. Mechanism of anoxic removal of ammonia 14.4. Factors affecting Anammox process and operational strategies 14.4.1. Temperature 14.4.2. pH 14.4.3. Dissolved oxygen (DO) 14.4.4. Nitrogen loading 14.4.5. Carbon sources 14.4.6. Organic toxicants 14.4.6.1. Alcohol and aldehydes 14.4.6.2. Phenols 14.4.6.3. Antibiotics 14.4.7. Effect of toxic metals on anammox process 14.4.7.1. Copper 14.4.7.2. Zinc 14.4.7.3. Cadmium 14.5. Recent advancement in anammox process 14.6. Diverse applications of anammox process 14.7. Future prospectus of anammox process 14.8. Conclusion Acknowledgments References Chapter 15: Anammox processes in marine environment: Deciphering the roles and applications 15.1. Introduction 15.2. Overview of the anammox process 15.3. Anammox bacteria in marine environment 15.4. Anammox processes in different marine ecosystems 15.4.1. Marine sediment 15.4.2. Oxygen minimum zone 15.4.3. Marine sponges 15.4.4. Arctic sea ice 15.5. Role of anammox in marine environment 15.5.1. Anammox and marine biogeochemical cycles 15.5.2. Marine nitrogen cycling and anammox: A global perspective 15.6. Application of anammox process in marine environment and its potential 15.6.1. Application in marine aquaculture 15.6.2. Application in wastewater treatment 15.7. Conclusion References Chapter 16: Diversity and versatility of ammonia-oxidizing bacteria 16.1. Introduction 16.2. Evolution and classification of ammonium-oxidizing microorganisms (AOMs) 16.2.1. AOB and AOA 16.2.2. Ammonium oxidizer in Comammox 16.2.3. Anaerobic ammonium oxidizer in anammox 16.2.4. Heterotrophic nitrifying bacteria (HNB) as ammonium oxidizers 16.3. Diversity, specificity, and adaptability of AOB 16.3.1. Diversity of AOB 16.3.2. Specificity of AOB 16.3.2.1. pH and Temperature 16.3.2.2. DO concentration 16.3.2.3. Hydraulic retention time (HRT) and Sludge residence time (SRT) 16.3.3. Adaptability in cohabitation with other species 16.4. Tolerance and inhibition of AOB 16.4.1. Ammonia 16.4.2. Carbon 16.4.3. Other inhibitory substances 16.5. Recent applications and challenges of AOB 16.5.1. Novel and Hybrid reactors involving AOBs 16.5.2. Challenges on employing AOB 16.6. Future research prospects employing the versatile ammonium oxidizers 16.7. Conclusions References Chapter 17: Role of ammonia oxidizers in performing simultaneous nitrification and denitrification process in advanced 17.1. Introduction 17.2. Theory of SND and practical applications in different WWTPs/technologies 17.3. Advantages of SND over anammox and other biological nitrogen removal processes 17.3.1. Nitrification-denitrification 17.3.2. Nitritation-Denitritation 17.3.3. Simultaneous nitrification and denitrification (SND) (or aerobic denitrification) 17.3.4. Nitritation-ANAMMOX 17.3.5. CANON process 17.4. Types and characteristics of different ammonia oxidizers and nitrate reducers encouraging SND mechanism prevailing ... 17.5. Operational parameters/factors that control the diversity of nitrifiers (ammonia and nitrite oxidizers) and denitri ... 17.5.1. Carbon source: Readily biodegradable COD, soluble COD, soluble BOD5 17.5.2. C/N ratio 17.5.3. Floc size and PHB storage 17.5.4. Dissolved oxygen control 17.5.5. ORP 17.5.6. pH 17.5.7. Temperature 17.5.8. HRT and SRT 17.6. Effect of free ammonia (FA), nitrate concentrations, and some metals on AOBs 17.7. Conclusion References Chapter 18: Diversity and functional role of ammonia-oxidizing bacteria in soil microcosms 18.1. Introduction 18.2. Diversity and distribution of ammonia-oxidizing bacteria in soil 18.2.1. Diversity of ammonia-oxidizing bacteria in different ecological niches 18.2.1.1. Agricultural soil 18.2.1.2. Grassland and forest soil 18.2.1.3. Cold habitats 18.2.2. Determination of soil AOB diversity 18.2.2.1. Culture-dependent method 18.2.2.2. Culture-independent method 18.3. Factors affecting ammonia oxidation in soil 18.3.1. Ammonia concentration 18.3.2. Soil pH 18.3.3. Temperature 18.3.4. Moisture content 18.3.5. Fertilizers and manures 18.3.6. Contaminants 18.3.7. Salinity 18.4. Molecular biology of ammonia oxidation in bacteria 18.5. Economic importance of AOBs 18.6. Conclusion and prospects References Chapter 19: Anaerobic ammonia oxidation: From key physiology to full-scale applications 19.1. Introduction 19.2. Anammox bacteria: Diversity and cell biology 19.3. Physiological parameters and the metabolic pathway involved in anammox 19.4. Possible reaction mechanism for the anammox process and the factors influencing the reaction 19.5. Anammox culture in the laboratory 19.6. Full-scale applications of the anammox process 19.7. Conclusions References Chapter 20: Ammonification in the oral microbiome with plausible link to diet and health and their systemic role 20.1. Introduction 20.2. Ammonification and chemolithotrophs 20.2.1. Gluconeogenesis 20.2.2. Role of ammonia-oxidizing bacteria 20.2.3. Ammonia flux 20.2.3.1. Measurement of ammonia flux 20.3. Oral microbiome 20.3.1. The oral microbiota 20.3.2. Streptococcus mutans group 20.3.3. Role of enzymes 20.3.4. Halitosis 20.3.5. Impact on daily life 20.4. Plausible link to diet and health 20.5. Contemporary scenario and future perception 20.5.1. Quorum sensing (QS) 20.5.2. Inhibition mechanism 20.6. Conclusion References Chapter 21: Nitritation kinetics and its application in wastewater treatment 21.1. Introduction 21.2. Factors affecting kinetics of ammonia oxidation microorganisms and nitritation performance 21.2.1. Aerobic ammonia-oxidizing microorganisms 21.2.2. Temperature 21.2.3. Free ammonia, and free nitrous acids and pH 21.2.4. Aeration control 21.2.5. DO concentration 21.3. Unit processes of nitritation 21.3.1. Suspended growth systems 21.3.2. Attached growth systems 21.3.3. Hybrid systems 21.4. Conclusions and perspectives References Index Back Cover