دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Baasansuren Jadamba (editor), Akhtar A. Khan (editor), Stanisław Migórski (editor), Miguel Sama (editor) سری: ISBN (شابک) : 9780367506308, 0367506300 ناشر: CRC Press سال نشر: 2021 تعداد صفحات: 395 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 12 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Deterministic and Stochastic Optimal Control and Inverse Problems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کنترل قطعی و تصادفی بهینه و مسائل معکوس نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
مشکلات معکوس شناسایی پارامترها و شرایط اولیه/مرزی در معادلات دیفرانسیل جزئی قطعی و تصادفی یک حوزه تحقیقاتی پر جنب و جوش و نوظهور را تشکیل می دهد که کاربردهای متعددی پیدا کرده است. یک مسئله مرتبط با اهمیت فراوان، مسئله کنترل بهینه برای معادلات دیفرانسیل تصادفی است.
این جلد ویرایش شده شامل مشارکت های دعوت شده از محققان مشهور جهان در موضوع کنترل و مسائل معکوس است. چندین مشارکت در کنترل بهینه و مسائل معکوس وجود دارد که جنبههای مختلف نظریه، روشهای عددی و کاربردها را پوشش میدهد. علاوه بر ارائه یکپارچه از جدیدترین و مرتبط ترین پیشرفت ها، این جلد همچنین برخی از مقالات نظرسنجی را ارائه می دهد تا مطالب را خودکفا کند. برای حفظ بالاترین سطح کیفیت علمی، همه نسخه های خطی به طور کامل بررسی شده اند.
Inverse problems of identifying parameters and initial/boundary conditions in deterministic and stochastic partial differential equations constitute a vibrant and emerging research area that has found numerous applications. A related problem of paramount importance is the optimal control problem for stochastic differential equations.
This edited volume comprises invited contributions from world-renowned researchers in the subject of control and inverse problems. There are several contributions on optimal control and inverse problems covering different aspects of the theory, numerical methods, and applications. Besides a unified presentation of the most recent and relevant developments, this volume also presents some survey articles to make the material self-contained. To maintain the highest level of scientific quality, all manuscripts have been thoroughly reviewed.
Cover Title Page Copyright Page Dedication Preface Table of Contents Contributors 1. All-At-Once Formulation Meets the Bayesian Approach: A Study of Two Prototypical Linear Inverse Problems 1.1 Introduction 1.1.1 Examples 1.2 Function Space Setting and Computation of Adjoints 1.2.1 Inverse Source Problem 1.2.2 Backwards Heat Problem 1.3 Analysis of the Eigenvalues 1.3.1 Inverse Source Problem 1.3.1.1 Analytic Computation of the Eigenvalues 1.3.1.2 Numerical Computation of the Eigenvalues 1.3.2 Backwards Heat Equation 1.3.2.1 Analytic Computation of the Eigenvalues 1.3.2.2 Numerical Computation of the Eigenvalues 1.4 Convergence Analysis 1.4.1 Fulfillment of the Link Condition for the All-At-Once-Formulation 1.5 Choice of Joint Priors 1.5.1 Block Diagonal Priors Satisfying Unilateral Link Estimates 1.5.2 Heuristic Choice of C0 for the Backwards Heat Problem 1.5.3 Priors for the Inverse Source Problem 1.5.4 Prior for the State Variable of the Backwards Heat Problem 1.6 Numerical Experiments 1.6.1 Lagrangian Method for Computing the Adjoint Based Hessian and Gradient 1.6.1.1 Inverse Source Problem 1.6.1.2 Backwards Heat Problem 1.6.2 Implementation 1.6.2.1 Inverse Source Problem 1.6.2.2 Backwards Heat Equation, Sampled Initial Condition 1.6.2.3 Backwards Heat Equation, Chosen Initial Condition 1.6.2.4 Backwards Heat Equation, Chosen Initial Condition, Prior Motivated by the Link Condition 1.7 Conclusions and Remarks References 2. On Iterated Tikhonov Kaczmarz Type Methods for Solving Systems of Linear Ill-posed Operator Equations 2.1 Introduction 2.2 A Range-relaxed Iterated Tikhonov Kaczmarz Method 2.2.1 Main Assumptions 2.2.2 Description of the Method 2.2.3 Preliminary Results 2.3 A Convergence Result for Exact Data 2.4 Numerical Experiments 2.5 Conclusions References 3. On Numerical Approximation of Optimal Control for Stokes Hemivariational Inequalities 3.1 Introduction 3.2 Notation and Preliminaries 3.3 Stokes Hemivariational Inequality and Optimal Control 3.4 Numerical Approximation of the Optimal Control Problem References 4. Nonlinear Tikhonov Regularization in Hilbert Scales with Oversmoothing Penalty: Inspecting Balancing Principles 4.1 Introduction 4.1.1 Hilbert Scales with Respect to an Unbounded Operator 4.1.2 Tikhonov Regularization with Smoothness Promoting Penalty 4.1.3 State of the Art 4.1.4 Goal of the Present Study 4.2 General Error Estimate for Tikhonov Regularization in Hilbert Scales with Oversmoothing Penalty 4.2.1 Smoothness in Terms of Source Conditions 4.2.2 Error Decomposition 4.3 Balancing Principles 4.3.1 Quasi-optimality 4.3.2 The Balancing Principles: Setup and Formulation 4.3.3 Discussion 4.3.4 Specific Impact on Oversmoothing Penalties 4.4 Exponential Growth Model: Properties and Numerical Case Study 4.4.1 Properties 4.4.2 Numerical Case Study References 5. An Optimization Approach to Parameter Identification in Variational Inequalities of Second Kind-II 5.1 Introduction 5.2 Some Variational Inequalities and an Abstract Framework for Parameter Identification 5.3 The Regularization Procedure 5.3.1 Smoothing the Modulus Function 5.3.2 Regularizing the VI of Second Kind 5.3.3 An Estimate of the Regularization Error 5.4 The Optimization Approach 5.5 Concluding Remarks—An Outlook References 6. Generalized Variational-hemivariational Inequalities in Fuzzy Environment 6.1 Introduction 6.2 Mathematical Prerequisites 6.3 Fuzzy Variational-hemivariational Inequalities 6.4 Optimal Control Problem References 7. Boundary Stabilization of the Linear MGT Equation with Feedback Neumann Control 7.1 Introduction 7.1.1 The Linearized PDE Model with Space-dependent Viscoelasticity 7.1.2 Main Results and Discussion 7.2 Wellposedness: Proof of Theorem 7.1.2 7.2.1 Stabilization in H: Proof of Theorem 7.1.5 References 8. Sweeping Process Arguments in the Analysis and Control of a Contact Problem 8.1 Introduction 8.2 Notation and Preliminaries 8.3 The Contact Model 8.4 An Existence and Uniqueness Result 8.5 A Continuous Dependence Result 8.6 An Optimal Control Problem 8.7 Conclusion References 9. Anderson Acceleration for Degenerate and Nondegenerate Problems 9.1 Introduction 9.1.1 Mathematical Setting and Algorithm 9.1.2 The Nondegeneracy Condition 9.2 Nondegenerate Problems 9.2.1 Relating Residuals to Differences Between Consecutive Iterates 9.2.2 Full Residual Bound 9.2.3 Numerical Examples (Nondegenerate) 9.3 Degenerate Problems 9.3.1 Scalar AA-Newton 9.3.2 Methods for Higher-order Roots 9.3.3 Analysis of the AA-Newton Rootfinding Method 9.3.4 Numerical Examples (Degenerate) 9.3.4.1 Example 1 9.3.4.2 Example 2 9.4 Conclusion References 10. Approximate Coincidence Points for Single-valued Maps and Aubin Continuous Set-valued Maps 10.1 Introduction 10.2 Notation 10.3 Coincidence and Approximate Coincidence Points of Single-valued Maps 10.4 An Application: Parametric Abstract Systems of Equations 10.5 Approximate Local Contraction Mapping Principle and ε-Fixed Points 10.6 Lyusternik-Graves Theorem and ε-Fixed Points for Aubin Continuous Set-valued Maps References 11. Stochastic Variational Approach for Random Cournot-Nash Principle 11.1 Introduction 11.2 The Random Model 11.3 Existence Results 11.4 The Infinite-dimensional Duality Theory 11.5 The Lagrange Formulation of the Random Model 11.6 The Inverse Problem 11.7 A Numerical Example 11.8 Concluding Remarks References 12. Augmented Lagrangian Methods For Optimal Control Problems Governed by Mixed Variational-Hemivariational Inequalities Involving a Set-valued Mapping 12.1 Introduction 12.2 Problem Statement and Preliminaries 12.3 Existence Results for Solutions 12.4 Optimal Control 12.5 Application to Optimal Control of a Frictional Contact Problem 12.6 Remarks and Comments References 13. Data Driven Reconstruction Using Frames and Riesz Bases 13.1 Introduction 13.2 Gram-Schmidt Orthonormalization 13.2.1 Weak Convergence 13.3 Basics on Frames and Riesz-Bases 13.4 Data Driven Regularization by Frames and Riesz Bases 13.4.1 Weak Convergence 13.5 Numerical Experiments 13.5.1 Orthonormalization Procedures 13.5.2 Comparison Between Frames and Decomposition Algorithms 13.6 Conclusions References 14. Antenna Problem Induced Regularization and Sampling Strategies 14.1 Uni-Variate Antenna Problem Induced Recovery Strategies 14.2 Multi-Variate Antenna Problem Induced Recovery Strategies References 15. An Equation Error Approach for Identifying a Random Parameter in a Stochastic Partial Differential Equation 15.1 Introduction 15.2 Solvability of the Direct Problem 15.3 Numerical Techniques for Stochastic PDEs 15.3.1 Monte Carlo Finite Element Type Methods 15.3.2 The Stochastic Collocation Method 15.3.3 The Stochastic Galerkin Method 15.4 An Equation Error Approach 15.5 Discrete Formulae 15.6 Computational Experiments 15.7 Concluding Remarks References Index