دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: فن آوری ویرایش: نویسندگان: Ayman El-Baz. Jasjit S Suri سری: ISBN (شابک) : 0750333537, 9780750333535 ناشر: IOP Publishing سال نشر: 2022 تعداد صفحات: 241 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 33 مگابایت
در صورت تبدیل فایل کتاب Detection Systems in Lung Cancer and Imaging به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب سیستم های تشخیص در سرطان ریه و تصویربرداری نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب بر روی روندها و چالشهای اصلی در تشخیص سرطان ریه تمرکز میکند و کارهایی را با هدف شناسایی تکنیکهای جدید و استفاده از آنها در تجزیه و تحلیل زیستپزشکی ارائه میکند. این جلد پیشرفتهای اخیر در سرطان ریه و تشخیص و طبقهبندی تصویربرداری را پوشش میدهد و کاربردهای اصلی تشخیص رایانهای مربوط به سرطان ریه را بررسی میکند: تقسیمبندی گرههای ریه، طبقهبندی گرههای ریه، و دادههای بزرگ در سرطان ریه. ایده آل برای دانشگاهیان شاغل در سرطان ریه، داده کاوی، یادگیری ماشین، یادگیری عمیق و یادگیری تقویتی، و همچنین متخصصان صنعت که در زمینه های مراقبت های بهداشتی، تصویربرداری سرطان ریه، یادگیری ماشینی، یادگیری عمیق و یادگیری تقویتی کار می کنند، این مجموعه ویرایش شده شامل یک مرجع ضروری برای محققان در خط مقدم این رشته است و یک نقطه ورود سطح بالا برای دانشجویان پیشرفته تر فراهم می کند.
This book focuses on major trends and challenges in the detection of lung cancer, presenting work aimed at identifying new techniques and their use in biomedical analysis. This volume covers recent advancements in lung cancer and imaging detection and classification, examining the main applications of computer aided diagnosis relating to lung cancer: lung nodule segmentation, lung nodule classification, and Big Data in lung cancer. Ideal for academics working in lung cancer, data-mining, machine learning, deep learning and reinforcement learning, as well as industry professionals working in the areas of healthcare, lung cancer imaging, machine learning, deep learning and reinforcement learning, this edited collection comprises an essential reference for researchers at the forefront of the field, and provides a high-level entry point for more advanced students.
PRELIMS.pdf Preface Acknowledgement Editor biographies Ayman El-Baz Jasjit S Suri List of contributors CH001.pdf Chapter 1 Lung cancer classification using wavelet recurrent neural network 1.1 Introduction 1.2 Lung cancer and lung image 1.2.1 Lung cancer 1.2.2 Lung image 1.2.3 Image processing 1.3 Classification process 1.3.1 Classification 1.3.2 Features extraction 1.3.3 Wavelet 1.3.4 Machine learning 1.3.5 Neural network 1.3.6 Recurrent neural network 1.3.7 Mean square error 1.3.8 Sensitivity, specificity, and accuracy 1.4 Dataset 1.5 Modeling wavelet recurrent neural network for lung cancer nodule classification 1.5.1 Image denoising using wavelet 1.5.2 Wavelet recurrent neural network for lung cancer classification 1.6 Results and discussion 1.7 Conclusion References CH002.pdf Chapter 2 Diagnosis of diffusion-weighted magnetic resonance imaging (DWI) for lung cancer 2.1 Introduction 2.2 Diagnosis of lung cancer and the pulmonary nodules and masses (figures 2.1–2.6, table 2.1) 2.3 Diagnostic capability of nodal involvement in lung cancer (figures 2.7–2.9) 2.4 Recurrence or metastasis from lung cancer (figure 2.11) 2.5 Diagnosis of lung cancer by whole-body DWI 2.6 Response evaluation to chemotherapy and/or radiotherapy (figure 2.11, table 2.2) 2.7 ADC and pathology 2.8 Medical cost of examinations 2.9 Advantage and disadvantage of MRI 2.10 Future plans 2.11 Conclusion References CH003.pdf Chapter 3 Computer assisted detection of low/high grade nodule from lung CT scan slices using handcrafted features 3.1 Introduction 3.2 Computer assisted detection system 3.2.1 Image collection 3.2.2 3D to 2D conversion 3.2.3 Threshold filter implementation 3.2.4 Nodule segmentation 3.2.5 Feature extraction 3.2.6 Feature selection 3.2.7 Classifier implementation 3.2.8 Validation of the CAD system 3.3 Results and discussions 3.4 Conclusion References CH004.pdf Chapter 4 Computer-aided lung cancer screening in computed tomography: state-of the-art and future perspectives 4.1 Introduction 4.1.1 Computer-aided lung cancer screening 4.2 Computer-aided lung nodule detection 4.3 Computer-aided lung nodule segmentation 4.4 Computer-aided lung nodule characterization 4.4.1 Malignancy characterization 4.4.2 Other nodule features 4.5 Computer-aided lung cancer patient diagnosis/management 4.5.1 Lung cancer patient diagnosis 4.5.2 Patient follow-up recommendation 4.6 Available datasets 4.6.1 ANODE09 dataset 4.6.2 Lung image database consortium image collection dataset 4.6.3 Luna16 dataset 4.6.4 National lung screening trial dataset 4.6.5 Kaggle data Science Bowl 2017 dataset 4.6.6 LNDB dataset 4.7 Conclusion and future perspectives References CH005.pdf Chapter 5 Radiation therapy in lung cancer treatment References CH006.pdf Chapter 6 Application of visual sensing technology in lung cancer screening 6.1 Introduction 6.2 Section 1: detection of lung cancer-related markers in exhaled breath through the visual sensing technology 6.2.1 Definition of VOCs in exhaled breath 6.2.2 Production mechanism of lung cancer-related VOCs in exhaled breath 6.2.3 Preparation method of sensor chip 6.2.4 Collection of lung cancer-related VOCs in exhaled breath 6.2.5 Analysis of VOC patterns 6.2.6 Computational formulas of the relative standard deviation (RSD or %RSD) and concentrations of saturated vapor (Cs) 6.2.7 Cross-response mechanism of the visual sensor 6.3 Section 2: detection of clinical exhaled breath of lung cancer through the visual sensing technique 6.3.1 Institutional review board approval 6.3.2 Exhaled breath collection and analysis 6.3.3 Basic data collection 6.3.4 Statistical analysis of data 6.4 Section 3: detection of metabolic volatile products of lung cancer cells through the visual sensing technique 6.5 Section 4: development space of the visual sensing technology 6.6 Section 5: important role and application prospect of visual sensing technology in lung cancer screening References CH007.pdf Chapter 7 Precision molecular imaging can perhaps be enhanced for lung cancer management via integrated analysis of general parameters such as age, gender, genetics, and lifestyle11Correspondence: juneindia@gmail.com. 7.1 Multiple molecular imaging modalities have been beneficial in the clinical management of various cancer types, including different types of lung cancer 7.2 There have been constant efforts for development of new probes for molecular imaging 7.3 Identifying novel biological molecules as targets for molecular imaging: research often starts with an exploration of gene expression patterns and mutations in the DNA, particularly those within the genes 7.4 Combinatorial analysis of metadata on age, gender, lifestyle, etc, has not received enough attention even though this approach has great potential to enhance precision medicine in the area of molecular imaging 7.5 Gender as a special case of a general parameter that has the potential to contribute to precision medicine in the area of molecular imaging 7.6 Conclusion 7.7 Funding and conflict of interest References CH008.pdf Chapter 8 Computed tomography ventilation imaging in lung cancer: theory, validation and application 8.1 Introduction 8.2 Theory 8.2.1 Overview 8.2.2 Intensity metric 8.2.3 Jacobian metric 8.2.4 Specific gas volume 8.2.5 Other metrics 8.2.6 Discussion 8.3 Validation 8.3.1 Comparisons with global measures 8.3.2 Comparisons with nuclear medicine imaging 8.3.3 Comparisons with xenon-enhanced CT 8.3.4 Comparisons with hyperpolarised gas MRI 8.3.5 Reproducibility 8.4 Clinical applications in lung cancer 8.4.1 Functional lung avoidance radiotherapy treatment planning 8.4.2 Post-radiotherapy functional lung assessment 8.5 Discussion and future research directions 8.5.1 Multi-institutional validation studies 8.5.2 Alveolar ventilation versus lung expansion 8.5.3 Ventilation versus perfusion 8.6 Conclusion References CH009.pdf Chapter 9 Novel non-invasive methods used in the early detection of lung cancer: from biomarkers to nanosystems 9.1 Introduction 9.2 Diagnostic methods for lung cancer 9.2.1 Invasive diagnostic methods 9.2.2 Non-invasive diagnostic methods 9.3 Conclusion References CH010.pdf Chapter 10 Heat shock proteins as biomarkers for early-stage diagnosis of lung cancer 10.1 Introduction 10.1.1 Risk factors and symptoms associated with lung cancer 10.2 Conventional diagnostic methods of lung cancer 10.2.1 Chest radiography 10.2.2 CT scan 10.2.3 MRI (magnetic resonance imaging) 10.2.4 PET (positron emission tomography) scan 10.3 Biomarkers as tools for early cancer detection 10.3.1 The chaperoning activity of HSPs 10.3.2 Role of HSPs in cancer 10.3.3 HSPs as biomarkers for lung cancer 10.4 Conclusion Declarations of interest: none Acknowledgments References