دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Manuel García-León
سری: Graduate Texts in Physics
ISBN (شابک) : 3031099699, 9783031099694
ناشر: Springer
سال نشر: 2022
تعداد صفحات: 636
[637]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 21 Mb
در صورت تبدیل فایل کتاب Detecting Environmental Radioactivity به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب تشخیص رادیواکتیویته محیطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب درسی اصول و روش های اندازه گیری رادیواکتیویته در محیط را ارائه می دهد. در این راستا، شمارش پرتوهای سطح پایین خاص و تکنیک های طیف سنجی یا طیف سنجی جرمی، از جمله منابع، توزیع، سطوح و دینامیک رادیواکتیویته در طبیعت مورد بحث قرار می گیرند. نویسنده توضیحات دقیقی از مفاهیم و قوانین اساسی رادیواکتیویته و همچنین انواع مختلف آشکارسازها و طیف سنج های جرمی مورد نیاز برای تشخیص ارائه می دهد. توجه ویژه ای به سوسوزن ها، آشکارسازهای نیمه هادی و آشکارسازهای یونیزاسیون گاز می شود. به منظور توضیح رادیوشیمی، مفاهیمی در مورد جداسازی شیمیایی نیز معرفی شده است. این کتاب برای دانشجویان کارشناسی ارشد و پیشرفته در فیزیک، شیمی یا مهندسی با گرایش به علوم محیطی و سایر رشتههایی است که نظارت بر محیطزیست و مدیریت آن بسیار مورد توجه است.
This textbook presents the principles and methods for the measurement of radioactivity in the environment. In this regard, specific low-level radiation counting and spectrometry or mass spectrometry techniques are discussed, including sources, distribution, levels and dynamics of radioactivity in nature. The author gives an accurate description of the fundamental concepts and laws of radioactivity as well as the different types of detectors and mass spectrometers needed for detection. Special attention is paid to scintillators, semiconductor detectors, and gas ionization detectors. In order to explain radiochemistry, some concepts about chemical separations are introduced as well. The book is meant for graduate and advanced undergraduate students in physics, chemistry or engineering oriented to environmental sciences, and to other disciplines where monitoring of the environment and its management is of great interest.
Preface Contents 1 Radioactivity: History and Phenomenology 1.1 Basic Description of the Atomic Nucleus. Nuclear Stability 1.1.1 Simple Nuclear Models 1.1.2 Atomic and Mass Numbers. Isobars, Isotopes, and Isotone Nuclei 1.1.3 Unstable Nuclides 1.2 Discovery of Radioactivity 1.2.1 Some Historic Data 1.2.2 Phenomenology of Radioactivity 1.3 Types of Radioactivity 1.3.1 Alpha Radioactivity 1.3.2 Beta Radioactivity: Electrons, Positrons, and Electron Capture 1.3.3 Gamma Radioactivity: Electromagnetic Radiation, Conversion Electrons, and Isomers 1.3.4 Other Radioactivity Types: Double Beta Decay, Proton and Neutron Emissions, Exotic Radioactivity, Fission 1.4 X-rays. Auger Electrons References 2 Radioactivity: Decay Law, Definitions, and Units 2.1 Exponential Decay Law. Decay Constant, Half-Life and Mean-Life 2.2 Radioactive Activity and Units 2.2.1 Exponential Law of Activity 2.2.2 Becquerels and Curies 2.3 Radioactive Series 2.3.1 Bateman Equations 2.3.2 Transient and Secular Equilibria 2.4 Partial Activities. Branching Ratio and Intensity of Radiation 2.5 Decay Schemes References 3 Natural and Artificial Radioactivity 3.1 Primordial Radionuclides 3.1.1 Long-Lived Radionuclides 3.1.2 Natural Radioactive Series 3.2 Cosmogenic Radionuclides 3.2.1 Cosmic Radiation 3.2.2 Production of Radionuclides by Cosmic Radiation 3.3 Artificial Radionuclides 3.3.1 Some Historic Data 3.3.2 Production of Radionuclides in Accelerators 3.3.3 Production of Radionuclides in Nuclear Reactors References 4 Environmental Radioactivity 4.1 Presence of Natural Radioactivity in the Environment 4.1.1 Primordial Radionuclides 4.1.2 Cosmogenic Radionuclides 4.1.3 NORM Materials and Non-nuclear Industries 4.2 Sources of Artificial Radionuclides 4.2.1 The Start of the Nuclear Era. The Bomb Pulse 4.2.2 Radioactive Fallout 4.2.3 Nuclear Fuel Reprocessing Plants 4.2.4 Other Nuclear Facilities and Activities: Nuclear Power Plants 4.2.5 Nuclear Accidents References 5 Levels and Behavior of Environmental Radioactivity 5.1 Dynamics of Radioactivity in the Environment 5.1.1 General Concepts of Radioecology 5.1.2 Radionuclide Speciation in the Environment 5.1.3 Exchange and Transport Processes. Transfer Parameters 5.1.4 Mathematical Modeling 5.2 Levels and Behavior of Radioactivity in the Atmosphere 5.2.1 Radioactivity in the Air 5.2.2 The Radon Problem 5.3 Levels and Behavior of Radioactivity in the Lithosphere. Radioactive Particles 5.3.1 Soils 5.3.2 Radioactive Particles 5.4 Levels and Behavior of Radioactivity in Fresh Waters 5.4.1 Rivers and Sediments 5.4.2 Lakes and Sediments 5.4.3 Groundwater 5.5 Levels and Behavior of Radioactivity in Oceans 5.5.1 Global Circulation 5.5.2 Seawater 5.5.3 Marine Sediments 5.6 Levels and Behavior of Radioactivity in the Biosphere 5.6.1 Plants, Animals 5.6.2 Seaweed and Other Marine Bioindicators 5.7 Levels and Behavior of Radioactivity in Foods 5.7.1 Drinking Water 5.7.2 Foodstuffs and Food Raw Materials References 6 Radiological Impact. Radiation Dosimetry 6.1 Radiation Dosimetry 6.1.1 Radiation Exposure, Absorbed Dose and Dose Equivalent: Magnitudes and Units 6.1.2 Effective and Committed Doses and Other Magnitudes 6.2 Biological Effects of Radioactivity 6.2.1 Stochastic and Deterministic Effects 6.2.2 Radiation Effects on Human Health 6.3 Radiological Impact 6.3.1 Radiation Protection Programs 6.3.2 Radiation Protection Regulations References 7 Principles of Radiation Detection: Interaction of Radiation with Matter 7.1 Interaction of Gamma Radiation with Matter 7.1.1 Photoelectric Effect 7.1.2 Compton Effect 7.1.3 Pair Production 7.1.4 Attenuation and Absorption Coefficients 7.1.5 Designing Gamma Radiation Detectors 7.2 Interaction of Charged Particles with Matter 7.2.1 Ionization and Excitation 7.2.2 Stopping Power. The Bethe-Bloch Equation 7.2.3 Bremsstrahlung 7.2.4 Cherenkov Radiation 7.2.5 Range, Specific Ionization, and Bragg Curves 7.2.6 Designing Charged-Particle Detectors 7.3 Nuclear Reactions. Interaction of Neutrons with Matter 7.3.1 Nuclear Reactions with Neutrons 7.3.2 Path of Neutrons Through Matter 7.3.3 Designing Neutron Detectors References 8 Principles of Radiation Detection: Counting and Spectrometry 8.1 Introduction 8.2 Counting Efficiency 8.2.1 Absolute Efficiency 8.2.2 Partial Efficiencies. Photopeak Efficiency 8.3 Background of Detectors 8.3.1 Sources and Components 8.3.2 Background Corrections 8.4 Dead Time 8.4.1 Sources of Dead Time 8.4.2 Dead-Time Corrections 8.5 Energy Spectra 8.5.1 Components 8.5.2 Energy Resolution References 9 Gas Ionization Detectors 9.1 Physics of Gas Ionization Detectors 9.1.1 Ionization in Gases 9.1.2 Charge Transfer Reactions in Gases 9.1.3 Multiplication of Charge in Gases. Townsend Avalanche 9.2 Ionization Chamber 9.3 Proportional Counters 9.4 Geiger–Müller Counters 9.5 Radiation Counting and Spectrometry with Gas Ionization Detectors 9.6 Background in Gas Ionization Detectors References 10 Scintillation Detectors 10.1 Physics of Scintillation Detectors 10.1.1 Organic Scintillators 10.1.2 Inorganic Scintillators 10.1.3 Gas Scintillators 10.1.4 Photomultipliers 10.2 Counting and Spectrometry with Scintillation Detectors 10.3 Gamma-Ray Spectrometry with Scintillation Detectors 10.3.1 Pulse Height Spectrum 10.3.2 Identification of Radionuclides and Activity Calculation 10.4 Counting and Spectrometry with Liquid Scintillation Detectors 10.4.1 Technical Aspects 10.4.2 Applications 10.5 Background in Scintillation Detectors References 11 Semiconductor Detectors 11.1 Physics of Semiconductor Detectors 11.1.1 Electron-hole Production 11.1.2 Energy Resolution 11.1.3 Types of Semiconductor Detectors 11.2 Gamma-Ray Spectrometry with Semiconductor Detectors 11.2.1 Pulse Height Spectrum 11.2.2 Identification of Radionuclides and Activity Calculation 11.3 Alpha- and Beta-Spectrometry with Semiconductor Detectors 11.3.1 Pulse Height Spectrum 11.3.2 Activity Determination 11.4 X-ray Spectrometry with Semiconductor Detectors 11.4.1 Pulse Height Spectrum 11.4.2 Activity Determination 11.5 Background in Semiconductor Detectors References 12 Dosimeters, Other Detectors, and Specific Designs 12.1 Dosimeters 12.1.1 Active Dosimeters 12.1.2 Passive Dosimeters 12.2 Track Detectors 12.3 ΔE–E Telescopes 12.4 Time-Of-Flight Spectrometers 12.5 Cherenkov Detectors 12.5.1 Cherenkov Threshold Counters 12.5.2 Cherenkov Differential Detectors 12.5.3 Cherenkov Circular Image Detectors References 13 Radiochemistry for Environmental Samples 13.1 Sampling Techniques 13.1.1 Solid Samples 13.1.2 Liquid Samples 13.1.3 Atmospheric Samples 13.1.4 Biological Samples 13.2 Sample Transport and Storage 13.3 Chemical Procedures 13.3.1 Preconcentration Processes 13.3.2 Separation and Purification Procedures 13.3.3 Source Preparation for Counting and Spectrometry 13.4 Yield Determination 13.5 Efficiency Calibration of Radiation Counters and Spectrometers 13.5.1 Calibration Curves for Charged Particles 13.5.2 Calibration Curves for Gamma Radiation 13.6 Speciation Studies 13.7 Quality Assurance References 14 Principles of Low-Level Counting and Spectrometry 14.1 Need of Low-Level Counting Techniques (LLC) 14.1.1 Levels of Radioactivity in the Environment 14.1.2 Problems Requiring LLC 14.2 Counting Statistics 14.2.1 The Random Nature of Radioactivity 14.2.2 Uncertainty Calculations in Radioactivity Measurements 14.3 Figure of Merit (FOM) 14.3.1 Definition and FOM Equation 14.3.2 Analysis of the FOM Equation 14.4 Generalized Figure of Merit 14.4.1 Definition and Equation 14.4.2 Analysis of the Equation 14.5 Designing an LLC Experiment 14.5.1 Sampling Strategy 14.5.2 Counting or Spectrometry, or Both 14.6 Limit of Detection and Minimum Detectable Activity References 15 Low-Level Counting and Spectrometry Techniques 15.1 Techniques for Detector Background Suppression 15.1.1 Passive Shielding 15.1.2 Active Shielding 15.1.3 Underground Laboratories 15.2 Techniques for Increasing Counting Efficiency 15.2.1 External Counting and Spectrometry 15.2.2 Internal Counting and Spectrometry 15.2.3 Radiation Coincidence Techniques References 16 Principles of Mass Spectrometry 16.1 Limitations of Radiometric Methods. Need for Mass Spectrometry Techniques 16.1.1 Loss of Information by Counting Emitted Radiation 16.1.2 Counting Atoms Instead of Emitted Radiation 16.2 Basics of Mass Spectrometry 16.2.1 Electrostatic and Magnetic Rigidity 16.2.2 The Mass-Energy Plane 16.2.3 The Dynamic Approach 16.3 Low-Energy Mass Spectrometers: TIMS, SIMS, GDMS, RIMS, ICP‒MS 16.4 Applications to Environmental Radioactivity References 17 Principles of Particle Accelerators 17.1 Need of Accelerators 17.2 Parts of an Accelerator 17.2.1 The Ion Source 17.2.2 The Acceleration Step 17.2.3 The Reaction Chamber 17.2.4 Ion Optics and Other Elements 17.3 Electrostatic Accelerators 17.3.1 Van de Graaff Accelerators 17.3.2 Cockcroft–Walton Accelerators 17.4 Linear Accelerators (LINACS) 17.5 Circular Accelerators 17.5.1 Cyclotrons 17.5.2 Synchrotrons 17.6 Applications of Accelerators to Environmental Problems References 18 Accelerator Mass Spectrometry (AMS) 18.1 Experimental Challenges in the Determination of Radioactivity in the Environment 18.2 Limitations of Low-Energy Mass Spectrometry 18.2.1 Isobar and Molecular Background 18.2.2 Mass-To-Charge Ratio Background 18.3 History of AMS 18.3.1 Early Measurements. The 14C Dating Problem 18.4 Principles and Contributions of AMS 18.4.1 Typical AMS Systems 18.4.2 The Ion Source and Low-Energy Side. Advantages of Accelerating Negative Ions 18.4.3 The Tandem. Charge Stripping and Tandem Beams. Molecular Background Suppression 18.4.4 High-Energy Side and Ion Detectors. Isobar Rejection 18.4.5 Measurements in AMS 18.5 Low-Energy AMS (LEAMS) 18.5.1 The Use of Low-Terminal Voltages 18.5.2 Charge Stripping at Low-Terminal Voltages 18.5.3 Some Examples of LEAMS Systems 18.6 AMS Applications to Environmental Radioactivity 18.6.1 AMS Sample Preparation 18.6.2 AMS in Environmental Radioactivity References 19 Neutron Activation Analysis 19.1 Principles of Neutron Activation Analysis (NAA) 19.1.1 Neutron Activation of Materials 19.1.2 Prompt Gamma NAA (PGNAA) 19.1.3 Delayed NAA (DNAA) 19.1.4 Radiochemical and Instrumental NAA 19.2 General Equation 19.2.1 The Mass Equation 19.2.2 Mass Determination Methods 19.3 Sensitivity, Interferences, and Limitations 19.3.1 Analysis of the Mass Equation. Design of an NAA Experiment 19.3.2 Types of Interferences 19.4 Experimental Systems 19.4.1 Radioisotope Sources 19.4.2 Nuclear Reactors 19.4.3 Neutron Generators. Accelerator-Based Neutron Sources 19.5 Other Neutron-Based Analytical Techniques 19.5.1 Neutron Resonance Capture Analysis 19.5.2 Neutron Resonance Transmission Analysis 19.6 Applications to Environmental Radioactivity References 20 Radioactive Particle Characterization 20.1 Radioactive Particle Characterization 20.2 Radioactive Particle Identification and Isolation 20.2.1 Radiometric Methods 20.2.2 Imaging Techniques 20.2.3 Particle Isolation and Manipulation 20.3 Radioactive Particle Size, Morphology, and Composition 20.3.1 Electron Microscopy 20.3.2 Computed Tomography (CT) 20.3.3 Nano- and µ-XRF Techniques 20.3.4 Nuclear Microprobes 20.4 Radioactive Particle Characterization 20.4.1 X-ray Diffraction (XRD) 20.4.2 XANES and EXAFS 20.4.3 Electron Spectroscopy Techniques (EELS, STEM-HAADF) References Index