دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Cunsheng Ding. Chunming Tang
سری:
ISBN (شابک) : 9811251320, 9789811251320
ناشر: World Scientific Publishing
سال نشر: 2021
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 47 مگابایت
در صورت تبدیل فایل کتاب Designs From Linear Codes به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی از کدهای خطی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
از زمان انتشار اولین ویرایش این مونوگرافی، تعمیم قضیه آسموس-ماتسون برای کدهای خطی بر روی میدان های محدود ایجاد شده است، دو پیشرفت 70 ساله و مقدار قابل توجهی پیشرفت دیگر در طرح های t از کدهای خطی انجام شده است. ساخته شده است. این ویرایش دوم یک بازنگری اساسی و بسط نسخه اول است. دو فصل جدید و دو ضمیمه جدید اضافه شدهاند و بیشتر فصلهای ویرایش اول بازنگری شدهاند. این یک گزارش کامل و مفصل از طرحهای t از کدهای خطی ارائه میکند. اکثر فصول این کتاب طرح های پشتیبانی کدهای خطی را پوشش می دهد. چند فصل به طرح های به دست آمده از کدهای خطی به روش های دیگر می پردازد. اتصالات بین بیضیها، بیشبیضیها، کمانهای حداکثر، بیضیها، توابع ویژه، کدهای خطی و طرحها نیز بررسی میشوند. این کتاب از نتایج کلاسیک و اخیر در مورد طرحهای کدهای خطی تشکیل شده است. در نظر گرفته شده است که مرجعی برای فارغالتحصیلان و محققانی باشد که روی ترکیبشناسی، یا نظریه کدگذاری، یا ارتباطات دیجیتال یا هندسه محدود کار میکنند. همچنین می تواند به عنوان یک کتاب درسی برای فارغ التحصیلان در این زمینه های موضوعی استفاده شود.
Since the publication of the first edition of this monograph, a generalisation of the Assmus-Mattson theorem for linear codes over finite fields has been developed, two 70-year breakthroughs and a considerable amount of other progress on t-designs from linear codes have been made. This second edition is a substantial revision and expansion of the first edition. Two new chapters and two new appendices have been added, and most chapters of the first edition have been revised.It provides a well-rounded and detailed account of t-designs from linear codes. Most chapters of this book cover the support designs of linear codes. A few chapters deal with designs obtained from linear codes in other ways. Connections among ovals, hyperovals, maximal arcs, ovoids, special functions, linear codes and designs are also investigated. This book consists of both classical and recent results on designs from linear codes.It is intended to be a reference for postgraduates and researchers who work on combinatorics, or coding theory, or digital communications, or finite geometry. It can also be used as a textbook for postgraduates in these subject areas.
Contents Preface Preface to the First Edition 1. Mathematical Foundations 1.1 The Rings Zn 1.2 Finite Fields 1.2.1 Introduction to Finite Fields 1.2.2 Traces, Norms, and Bases 1.2.3 Field Automorphisms 1.2.4 Additive and Multiplicative Characters 1.2.5 Several Types of Character Sums 1.2.6 Quadratic Forms over GF(q) 1.3 Group Algebra 1.4 Special Types of Polynomials 1.4.1 Permutation Polynomials over Finite Fields 1.4.2 Dickson Polynomials over Finite Fields 1.4.3 Krawtchouk Polynomials 1.5 Cyclotomy in GF(r) 1.5.1 Cyclotomy 1.5.2 Cyclotomy in GF(r) 1.6 Finite Geometries 1.6.1 Projective Spaces PG(m, GF(q)) 1.6.2 Affine Spaces AG(m, GF(q)) 1.6.3 Projective Planes 1.6.4 Desarguesian Projective Planes PG(2, GF(q)) 1.6.5 Central Collineations and Homologies of Projective Planes 1.6.6 Affine Planes 1.7 Basics of Group Actions 1.8 Permutation Groups and Their Actions 1.8.1 Semilinear Mappings of GF(q) 1.8.2 General Linear Groups GLm(GF(q)) 1.8.3 General Semilinear Groups ΓLm(GF(q)) 1.8.4 Special Linear Groups SLm(GF(q)) 1.8.5 General Affine Groups GAm(GF(q)) 1.8.6 Special Affine Groups SAm(GF(q)) 1.8.7 Semilinear Affine Groups ΓAm(GF(q)) 1.8.8 Projective General Linear Groups PGLm(GF(q)) 1.8.9 Projective Semilinear Groups PΓLm(GF(q)) 1.8.10 Projective Special Linear Groups PSLm(GF(q)) 1.8.11 A Summary of the Group Actions on GF(q)m and (GF(q)m) 1.8.12 Permutation Group Actions on GF(qm) and GF(qm) 1.8.13 Highly Transitive Permutation Groups 1.8.14 Homogeneous Permutation Groups 1.9 Planar Functions 1.9.1 Definitions and Properties 1.9.2 Some Known Planar Functions 1.9.3 Planar Functions from Semifields 1.9.4 Affine Planes from Planar Functions 1.10 Almost Perfect Nonlinear and Almost Bent Functions 1.10.1 APN Functions 1.10.2 AB Functions 1.11 Periodic Sequences 1.11.1 The Linear Span 1.11.2 Correlation Functions 1.12 Difference Sets 1.12.1 Fundamentals of Difference Sets 1.12.2 Divisible and Relative Difference Sets 1.12.3 Characteristic Sequence of Difference Sets in Zn 1.12.4 Characteristic Functions of Difference Sets 2. Linear Codes over Finite Fields 2.1 Linear Codes over GF(q) 2.2 The MacWilliams Identity and Transform 2.3 The Pless Power Moments 2.4 Punctured Codes of a Linear Code 2.5 Shortened Codes of a Linear Code 2.6 Extended Code of a Linear Code 2.7 Augmented Code of a Linear Code 2.8 Automorphism Groups and Equivalences of Linear Codes 2.9 Subfield Subcodes 2.10 Bounds on the Size of Linear Codes 2.11 Restrictions on Parameters of Linear Codes 2.12 Bounds on the Size of ConstantWeight Codes 2.13 Hamming and Simplex Codes, and One-Weight Codes 2.14 A Trace Construction of Linear Codes 2.15 Projective Linear Codes and Projective Geometry 2.16 Generalised HammingWeights of Linear Codes 2.17 Notes 3. Cyclic Codes over Finite Fields 3.1 Factorization of xn – 1 over GF(q) 3.2 Generator and Check Polynomials 3.3 Idempotents of Cyclic Codes 3.4 Zeros of Cyclic Codes 3.5 A Trace Construction of Cyclic Codes over Finite Fields 3.6 Lower Bounds on the Minimum Distance 3.7 BCH Codes 3.7.1 Definition and Basic Properties 3.7.2 Recent Advances in BCH Codes 3.8 Quadratic Residue Codes 3.8.1 Quadratic Residue Codes 3.8.2 Extended Quadratic Residue Codes 3.9 Duadic Codes 3.10 A Combinatorial Approach to Cyclic Codes 3.11 Notes 4. Designs and Codes 4.1 Fundamentals of t-Designs 4.1.1 Incidence Structures 4.1.2 Incidence Matrices 4.1.3 Isomorphisms and Automorphisms 4.1.4 Definition and Properties of t-Designs 4.1.5 Intersection Numbers of t-Designs 4.1.6 Related Designs of a t-Design 4.2 The Classical Codes of t-Designs 4.2.1 Linear Codes of Incidence Structures 4.2.2 The Classical Codes of t-Designs 4.3 The Support Designs of Linear Codes 4.3.1 The Construction of t-Designs from Linear Codes 4.3.2 MDS Codes and Complete Designs 4.3.3 Constructing Designs from Related Binary Codes 4.4 Designs of Codes with Special Automorphism Groups 4.5 Designs from Finite Geometries 4.6 The Codes of Geometric Designs 4.6.1 The Codes of the Designs of the Affine Geometry 4.6.2 The Codes of the Designs of the Projective Geometry 4.7 Spherical Geometry Designs 4.8 Notes 5. Designs of Binary Reed-Muller Codes 5.1 Binary Reed-Muller Codes and Their Relatives 5.2 Designs from the Binary Reed-Muller Codes 5.2.1 Designs in R2(1,m) and R2(m – 2,m) 5.2.2 Designs in R2(2,m) and R2(m–3,m) 5.2.3 Designs in R2(r,m) for 3 ≤ r ≤ m – 4 5.2.4 Designs from Binary Codes between R2(r,m) and R2(r+1,m) 5.3 Designs from the Punctured Binary Reed-Muller Codes 5.4 Notes 6. Affine Invariant Codes and Their Designs 6.1 Affine-Invariant Extended Cyclic Codes and Their Designs 6.2 Specific Families of Affine-Invariant Extended Cyclic Codes 6.2.1 Extended Narrow-Sense Primitive BCH Codes 6.2.2 Generalised Reed-Muller Codes and Their Designs 6.2.3 Dilix Codes and Their Designs 6.2.4 Extended Binary Cyclic Codes with Zeros of the Forms α and α1+2e and Their Designs 6.3 Another Family of Affine-Invariant Codes and Their Designs 6.3.1 The Special Case q = 2 6.3.2 Several Special Cases of 3-Designs 6.4 Notes 7. Weights in Some BCH Codes over GF(q) 7.1 A Recall of BCH Codes 7.2 The Parameters of the Codes C(q,qm–1,δ1,1) and C(q,qm–1,δ1+1,0), where δ1 = (q–1)qm–1 – 1 7.3 The Parameters of the Codes C(q,qm–1,δ2,1) and C(q,qm–1,δ2+1,0), where δ2 = (q–1)qm–1 – 1 – q (m–1)/2 7.4 The Parameters of the Codes C(q,qm–1,δ3,1) and C(q,qm–1,δ3+1,0), where δ3 = (q – 1)qm–1 – 1 – q (m+1)/2 7.5 Weights in C(2,2m–1,δ,1) and Its Dual for δ ϵ {3,5,7} 7.6 Notes 8. Designs from Four Types of Linear Codes 8.1 Designs from a Type of Binary Codes with Three Weights 8.2 An Extended Construction from Almost Bent Functions 8.3 Designs from a Type of Binary Codes with Five Weights 8.3.1 The Codes with Five Weights and Their Related Codes 8.3.2 Infinite Families of 2-Designs from C┴m and Cm 8.3.3 Infinite Families of 3-Designs from C┴m and C┴m? 8.3.4 Two Families of Binary Cyclic Codes with the Weight Distribution of Table 8.2 8.4 Infinite Families of Designs from a Type of Ternary Codes 8.5 Infinite Families of Designs from Another Type of Ternary Codes 8.5.1 Conjectured Infinite Families of 2-Designs 8.5.2 A Class of Ternary Cyclic Codes of Length 3m–1/2 8.5.3 Shortened Codes and Punctured Codes from C(E) 8.5.4 Steiner Systems and 2-Designs from C(E) 8.6 Notes 9. Designs from BCH Codes 9.1 A General Theorem on Designs from Primitive BCH Codes 9.2 Designs from the Primitive BCH Codes C(2,2m–1,δ2,1) 9.3 Designs from the Primitive BCH Codes C(q,qm–1,δ2,1) for Odd Prime q 9.4 Designs from the Primitive BCH Codes C(2,2m–1,δ3,1) 9.5 Designs from the Primitive BCH Codes C(q,qm–1,δ3,1) for Odd q 9.6 Designs from C(2,2m–1,5,1) and C(2,2m–1,5,1)┴ for Even m ≥ 4 9.7 Designs from the Primitive BCH Codes C(q,qm–1,3,1) for q ≥ 3 9.8 Designs from Nonprimitive BCH Codes 9.9 Notes 10. Designs from Codes with Regularity 10.1 Packing and Covering Radii 10.2 The Characteristic Polynomial of a Code 10.3 Regular Codes and Their Designs 10.4 Perfect Codes 10.5 Designs in Perfect Codes 10.5.1 Theory of Designs in Perfect Codes 10.5.2 Designs in the [23,12,7] Golay Binary Code 10.5.3 Designs in the [11,6,5] Golay Ternary Code 10.5.4 Designs in the Hamming and Simplex Codes 10.6 Designs in Uniformly Packed Codes 10.6.1 Definitions, Properties and General Results 10.6.2 Designs in Uniformly Packed Binary Codes 11. Designs from QR and Self-Dual Codes 11.1 Self-Dual Codes and Their Designs 11.1.1 Definition and Existence 11.1.2 Weight Enumerators of Self-Dual Codes 11.1.3 Extremal Self-Dual Codes and Their Designs 11.2 Designs from Extended Quadratic Residue Codes 11.2.1 Infinite Families of 2-Designs and 3-Designs 11.2.2 Sporadic 5-Designs from Self-Dual Codes 11.3 Pless Symmetry Codes and Their Designs 11.4 Other Self-Dual Codes Holding t-Designs 12. Designs from Arc and MDS Codes 12.1 Arcs, Caps, Conics, Hyperovals and Ovals in PG(2,GF(q)) 12.2 Hyperovals in PG(2,GF(q)) and [q+2,3,q] MDS Codes 12.3 Oval Polynomials on GF(2m) 12.3.1 Basic Properties of Oval Polynomials 12.3.2 Translation Oval Polynomials 12.3.3 Segre and Glynn Oval Polynomials 12.3.4 Cherowitzo Oval Polynomials 12.3.5 Payne Oval Polynomials 12.3.6 Subiaco Oval Polynomials 12.4 A Family of Hyperovals from Extended Cyclic Codes 12.5 Hyperoval Designs 12.6 Hadamard Designs from Hyperovals 12.7 Maximal Arc Codes and Their Designs 12.8 A Family of Extended Cyclic Codes and Their Designs 13. Designs from Oviod Codes 13.1 Ovoids in PG(3,GF(q)) and Their Properties 13.2 Ovoids in PG(3,GF(q)) and [q2+1,4,q2–q] Codes 13.3 A Family of Cyclic Codes with Parameters [q2+1,4,q2–q] 13.4 Designs from Ovoid Codes over GF(q) 13.5 Ovoids, Codes, Designs and Inversive Planes 13.6 Designs Held in Punctured and Shortened Ovoid Codes 14. Quasi-Symmetric Designs from Bent Codes 14.1 Derived and Residual Designs of Symmetric Designs 14.2 Symmetric and Quasi-Symmetric SDP Designs 14.3 The Roadmap of the Remaining Sections 14.4 Bent Functions 14.5 Symmetric 2-(2m,2m–1 ???? 2m–22 ,2m–2 – 2m–22 ) Designs and Their Codes 14.6 Symmetric 2-(2m,2m–1 – 2m–22, 2m–2 – 2m–22) SDP Designs 14.7 Derived and Residual Designs of Symmetric SDP Designs 14.8 A General Construction of Linear Codes with Bent Functions 14.9 Infinite Families of 2-Designs from Bent Codes 14.10 Notes 15. Almost MDS Codes and Their Designs 15.1 Almost MDS Codes 15.2 Near MDS Codes 15.3 Designs from Near MDS Codes 15.3.1 A General Theorem about t-Designs from NMDS Codes 15.3.2 Infinite Families of NMDS Codes Holding Infinite Families of t-Designs 15.3.3 An Infinite Family of Near MDS Codes Holding 4-Designs 15.3.3.1 Combinatorial t-Designs Constructed with Some Elementary Symmetric Polynomials 15.3.3.2 Infinite Families of BCH Codes Holding t-Designs for t ϵ {3,4} 15.4 Sporadic Designs from Near MDS Codes 15.5 Designs from Almost MDS Codes 16. Beyond the Assmus-Mattson Theorem 16.1 Introduction of Notation and Notions for This Chapter 16.2 The Assmus-Mattson Theorem in the Languge of This Chapter 16.3 New Notation of Intersection Numbers of Designs 16.4 Shortened and Punctured Codes of Linear Codes Supporting t-Designs 16.4.1 General Results for Shortened and Punctured Codes of Linear Codes Supporting t-Designs 16.4.2 Punctured and Shortened Codes of a Family of Binary Codes 16.4.3 Punctured and Shortened Codes of Another Family of Binary Codes 16.5 Characterizations of Linear Codes Supporting t-Designs via Shortened and Punctured Codes 16.6 A Generalization of the Assmus-Mattson Theorem 16.6.1 The Generalization of the Assmus-Mattson Theorem 16.6.2 The Generalized Assmus-Mattson Theorem versus the Original 16.7 Some 2-Designs and Differentially δ-Uniform Functions 16.8 Notes Appendix A Sporadic Designs from Linear Codes A.1 Designs from Cyclic Codes of Length 17 over GF(4) A.2 Steiner Systems from Cyclic Codes of Length 17 over GF(16) A.3 Designs from Cyclic Codes of Length 23 over GF(3) A.4 Designs from Cyclic Codes of Length 29 over GF(4) Appendix B Designs from Binary Codes with Regularities B.1 Four Fundamental Parameters of Codes B.2 Designs from Codes with Regularity B.2.1 Designs from Codes When s ≤ d′ B.2.2 Designs from Nonlinear Codes When s′ ≤ d Appendix C Exercises on Mathematical Foundations C.1 Modular Arithmetic C.2 Elementary Number Theory C.3 Groups, Rings and Fields C.4 Polynomials over a Field F C.5 A Constructive Introduction to Finite Fields Bibliography Notation and Symbols Index