ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Design of Wood Structures-ASD LRFD

دانلود کتاب طراحی سازه های چوبی-ASD LRFD

Design of Wood Structures-ASD LRFD

مشخصات کتاب

Design of Wood Structures-ASD LRFD

ویرایش: 6 
نویسندگان: , , , ,   
سری:  
ISBN (شابک) : 0071455396, 9780071455398 
ناشر: McGraw-Hill Professional 
سال نشر: 2007 
تعداد صفحات: 1096 
زبان: English  
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 22 مگابایت 

قیمت کتاب (تومان) : 35,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 15


در صورت تبدیل فایل کتاب Design of Wood Structures-ASD LRFD به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طراحی سازه های چوبی-ASD LRFD نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب طراحی سازه های چوبی-ASD LRFD

متن و مرجع پیشرو در طراحی چوب، به روز شده تا شامل آخرین کدها و داده ها باشد. ادامه استاندارد استرلینگ که توسط نسخه های قبلی تنظیم شده است، این مرجع ضروری شما را در طراحی کامل یک سازه چوبی (به جز پایه)، با دنباله همان دنباله هدایت می کند. در فرآیند طراحی/ساخت واقعی استفاده می شود.


توضیحاتی درمورد کتاب به خارجی

The leading text and reference on wood design, updated to include the latest codes and data Continued the sterling standard set by earlier editions, this indispensable reference leads you through the complete design of a wood structure (except for the foundation), following the same sequence used in the actual design/construction process.



فهرست مطالب

Design of Wood Structures ASD-LRFD, 6ed, 2007......Page 1
Contents......Page 4
Nomenclature......Page 19
Units......Page 24
Abbreviations......Page 25
Symbols......Page 27
Floor Dead Loads......Page 57
1.1 Introduction......Page 39
2.1 Introduction......Page 53
Tributary Area Calculations......Page 58
Floor live loads......Page 60
Total Load......Page 61
Tributary Areas......Page 63
Roof Loads......Page 64
EXAMPLE 2.5 Combined D Lr on Sloping Roof (Fig. 2.5)......Page 65
Snow Load......Page 70
Combining Loads......Page 71
EXAMPLE 2.7 Topographic Factor for Hillside Site......Page 79
EXAMPLE 2.8 Wind Forces for Main Windforce-Resisting Systems (MWFRS)......Page 82
Horizontal Wind Pressures on Vertical Projection of Building......Page 83
Vertical Wind Pressures on Horizontal Projection of Building......Page 84
EXAMPLE 2.9 Overall Moment Stability......Page 88
EXAMPLE 2.10 Wind Forces—Components and Cladding......Page 90
Components and Cladding—Away from Discontinuities......Page 92
Components and Cladding—Near Discontinuities......Page 93
EXAMPLE 2.11 Building Subjected to Earthquake......Page 96
EXAMPLE 2.12 Typical Theory Response Spectrum......Page 106
EXAMPLE 2.13 Effect of Local Soil Conditions......Page 107
Fx Distribution—Vertical Elements (Shearwalls)......Page 115
Fpx Distribution—Horizontal Elements (Diaphragms)......Page 116
Transverse and Longitudinal Directions Defined......Page 118
Seismic Forces for Design of Wall Element......Page 122
Calculation of Wall Seismic Forces......Page 123
Wind Forces......Page 124
EXAMPLE 2.17 Beam De.ection Limits......Page 132
3.2 Structures Subject to Vertical Loads......Page 145
EXAMPLE 3.1 Typical Post-and-Beam Framing......Page 146
EXAMPLE 3.2 Beam Loading Diagrams......Page 147
Braced Frame......Page 150
Shearwall......Page 151
Vertical Wall Framing......Page 152
Vertical Wall Framing and Horizontal Diaphragm......Page 153
EXAMPLE 3.5 Seismic Coef.cient Calculation......Page 160
Sample Calculation......Page 161
EXAMPLE 3.6 Wind Force Calculation......Page 164
Load to Diaphragm......Page 165
EXAMPLE 3.7 Seismic Force Calculation......Page 167
Base Shear Force V, Story (Shearwall) Force Fx, and Story (Diaphragm) Force Fpx......Page 169
Redundancy/Reliability Factor......Page 170
Wind and Seismic Forces in Load Combinations......Page 171
EXAMPLE 3.8 Unit Shear in Roof Diaphragm......Page 172
Seismic Forces in Load Combinations......Page 174
Roof Diaphragm Seismic Force......Page 175
Seismic Forces in Load Combinations......Page 176
EXAMPLE 3.10 Two-Story Lateral Force Calculation, Base Shear and Shearwalls......Page 178
Load to Diaphragms......Page 179
Seismic Forces Building Period Ta and Design Spectral Response Accelerations SDS and SD1......Page 181
Seismic Base Shear Coefficient......Page 182
Tributary Roof Dead Loads......Page 183
Seismic Tables......Page 184
Fx Story (Shearwall) Coefficients......Page 185
Uniform Forces to Diaphragms Using Fx Story Coefficients......Page 186
Shear at Midheight of Second-Story Walls (Using Fx Story Shearwall Forces)......Page 188
Comparison of Wind and Seismic Forces in Load Combinations......Page 189
Shear at Midheight of First-Story Walls [Using Fx Story (Shearwall) Forces]......Page 190
Comparison of Wind and Seismic Forces in Load Combinations......Page 191
Fpx Story (Diaphragm) Coefficient......Page 192
Shear in Second-Floor Diaphragm Using Fpx Forces......Page 194
Comparison of Wind and Seismic Forces in Load Combinations......Page 196
4.1 Introduction......Page 205
EXAMPLE 4.1 Bar Chart Showing Different MC Conditions......Page 217
EXAMPLE 4.2 Shrinkage of Lumber......Page 218
EXAMPLE 4.3 Simpli.ed Method of Estimating Shrinkage......Page 221
EXAMPLE 4.4 Dressed, Rough-Sawn, and Full-Sawn Lumber......Page 231
EXAMPLE 4.5 Section Properties for Dressed Lumber......Page 232
4.12 Size Categories and Commercial Grades......Page 233
EXAMPLE 4.7 Commercial Grades......Page 235
Adjusted ASD Design Values......Page 238
Adjustment Factors......Page 239
Adjusted LRFD Design Values......Page 240
Adjustment Factors......Page 241
EXAMPLE 4.10 Load Duration Factor (ASD Only)......Page 245
EXAMPLE 4.11 Comparison of Load Combinations Using ASD......Page 246
Part b......Page 247
4.17 Size Factor CF......Page 249
4.23 Format Conversion Factor KF (LRFD Only)......Page 253
4.24 Design Problem: Adjusted Design Values......Page 254
Part a......Page 255
Part b......Page 257
Part c......Page 259
Part d......Page 262
5.2 Sizes of Glulam Members......Page 273
Distribution of Laminations is Glulam Beams......Page 279
Bending of Glulams......Page 280
Volume Factor CV for Glulam......Page 290
5.7 Design Problem: Adjusted Design Values......Page 291
Volume Factor CV......Page 292
Positive Bending:......Page 293
Modulus of Elasticity:......Page 294
6.1 Introduction......Page 299
6.2 Bending......Page 300
Strongand Weak-Axis Bending......Page 303
Full Lateral Support a Beam......Page 306
Bending Design Values for Beams and Stringers......Page 308
Fbx in Glulam Bending Combinations......Page 309
Lateral Buckling of Bending Member......Page 313
EXAMPLE 6.7 Lateral Support of Beams—Approximate Method......Page 314
EXAMPLE 6.8 Slenderness Ratio for Bending Members......Page 316
Adjusted Bending Design Value Considering Lateral Stability......Page 317
Beam Stability Factor CL......Page 318
6.4 Adjusted Bending Design Value Summary......Page 321
Adjusted Bending Design Value for Strong Axis......Page 322
Adjusted Bending Design Value for Weak Axis......Page 323
Adjusted Bending Design Value for Strong Axis......Page 324
Adjusted Bending Design Value For Weak Axis......Page 326
6.5 Shear......Page 327
Wood Beam......Page 328
Reduction in Loads for Horizontal Shear Calculations......Page 330
Shear in Notched Beams......Page 332
6.6 De.ection......Page 334
Camber......Page 335
Bearing Perpendicular to Grain......Page 340
Adjustment Based on Bearing Length......Page 341
Bearing at an Angle to Grain......Page 343
Hankinson Formula......Page 344
Bending......Page 346
Shear......Page 347
Bearing......Page 348
Bending......Page 349
Shear......Page 350
Bearing......Page 351
6.10 Design Problem: Rough-Sawn Beam Using ASD......Page 352
Shear......Page 353
6.11 Design Problem: Notched Beam......Page 354
Shear Check......Page 355
6.12 Design Problem: Sawn-Beam Analysis......Page 356
Shear......Page 357
Bending......Page 358
Deflection......Page 359
6.13 Design Problem: Glulam Beam with Full Lateral Support......Page 360
Deflection......Page 362
EXAMPLE 6.25 Glulam Beam—Full Lateral Support Using LRFD......Page 363
Bending......Page 364
Deflection......Page 365
6.14 Design Problem: Glulam Beam with Lateral Support at 8 ft-0 in.......Page 366
Bending......Page 367
6.15 Design Problem: Glulam Beam with Lateral Support at 48 ft-0 in.......Page 370
6.16 Design Problem: Glulam with Compression Zone Stressed in Tension......Page 373
Negative Moment (Compression Zone Stressed in Tension)......Page 375
6.17 Cantilever Beam Systems......Page 377
Load Case 3: (D Unbalanced L or 1.2D 1.6L on Right Span)......Page 379
EXAMPLE 6.31 Lateral Stability of Cantilever Systems......Page 380
EXAMPLE 6.32 Layup of Decking......Page 382
EXAMPLE 6.33 Laminated Veneer Lumber......Page 385
EXAMPLE 6.34 Parallel Strand Lumber......Page 387
Prefabricated Wood I-Joists......Page 388
EXAMPLE 6.36 Light-Frame Wood Trusses......Page 390
6.20 References......Page 392
7.1 Introduction......Page 405
EXAMPLE 7.1 Net Areas at Connections......Page 409
7.3 Design Problem: Tension Member......Page 411
Force in Lower Chord......Page 412
Determine Required Size of Tension Member......Page 413
Determine Required Size of Tension Member......Page 414
Actual Stresses......Page 416
EXAMPLE 7.5 Column Slenderness Ratio—Introduction......Page 418
EXAMPLE 7.6 Ylinen Column Equation......Page 420
Column Stability Factor......Page 421
7.6 Design Problem: Axially Loaded Column......Page 429
Trial 1......Page 430
Trial 2......Page 431
Trial 1......Page 432
Trial 2......Page 433
EXAMPLE 7.9 Capacity of a Glulam Column Using ASD......Page 435
Analyze Column Buckling About x Axis......Page 436
EXAMPLE 7.10 Capacity of a Glulam Column Using LRFD......Page 437
Analyze Column Buckling About x Axis......Page 438
Analyze Column Buckling About y Axis......Page 439
7.8 Design Problem: Capacity of a Bearing Wall......Page 440
Column Capacity of Stud......Page 441
Bearing Capacity of Wall Plates (Fig. 7.13b)......Page 442
Column Capacity......Page 444
Combined Axial Tension and Bending Tension......Page 447
Net Compressive Stress......Page 448
Net Compressive Stress......Page 450
7.11 Design Problem: Combined Bending and Tension......Page 451
Loads......Page 452
Member Design......Page 453
EXAMPLE 7.16 Interaction Equation for Beam-Column with Moment about x Axis......Page 458
EXAMPLE 7.17 General Interaction Formula for Combined Compression and Bending......Page 461
Bending Stresses......Page 462
7.13 Design Problem: Beam-Column......Page 463
EXAMPLE 7.18 Beam-Column Design Using ASD......Page 464
Axial......Page 465
Combined Stresses......Page 467
EXAMPLE 7.19 Combined Bending and Compression in a Stud Wall Using LRFD......Page 469
Load case 1: Gravity Loads Only......Page 470
Load case 2: Gravity Loads Lateral Forces......Page 472
7.15 Design Problem: Glulam Beam-Column Using ASD......Page 477
Load Case 1: Gravity Loads......Page 478
Load Case 2: D W......Page 479
7.17 Design Problem: Column with Eccentric Load Using ASD......Page 485
Axial......Page 486
Eccentric Load about Strong Axis......Page 488
Eccentric Load about Weak Axis......Page 490
8.1 Introduction......Page 501
EXAMPLE 8.1 Wood Structural Panels Used as Sheathing......Page 502
EXAMPLE 8.2 Panel Installation Clearances......Page 504
8.3 Plywood Makeup......Page 505
EXAMPLE 8.4 Plywood Cross-Laminated Construction......Page 506
EXAMPLE 8.5 Direction of Grain......Page 507
EXAMPLE 8.6 Veneer Grades and Repairs......Page 512
EXAMPLE 8.7 Sanded Plywood Panel......Page 515
EXAMPLE 8.8 Plywood Sheathing Grade......Page 516
EXAMPLE 8.9 Nonveneer Sheathing Grade......Page 519
EXAMPLE 8.10 Determination of Panel Sheathing Requirements......Page 521
EXAMPLE 8.11 Roof Sheathing Edge Support Requirements......Page 522
Part 1 (ASD)......Page 524
Part 2 (ASD)......Page 525
Part 2 (LRFD)......Page 526
8.11 Floor Sheathing......Page 527
EXAMPLE 8.14 Single-Layer Floor Panels......Page 529
8.12 Design Problem: Floor Sheathing......Page 530
Loads (ASD):......Page 531
EXAMPLE 8.16 Wood Structural Panel Sheathing with Separate Siding......Page 533
EXAMPLE 8.17 Plywood Combined Sheathing-Siding......Page 534
EXAMPLE 8.18 Plywood Beam Loading and Section Properties......Page 537
Plywood under In-Plane Loads......Page 538
EXAMPLE 8.19 Types of Shear in Plywood......Page 539
EXAMPLE 8.20 Adjusted Design Values of Wood Structural Panels......Page 540
Adjusted ASD Axial Stiffness......Page 541
Adjusted ASD Shear Rigidity through the Thickness......Page 542
Adjusted LRFD Bending Strength......Page 543
Adjusted LRFD Axial Tension......Page 544
Adjusted LRFD In-Plane Shear......Page 545
Adjusted LRFD Shear through the Thickness......Page 546
9.1 Introduction......Page 551
EXAMPLE 9.1 Diaphragm Forces and Boundary Members......Page 553
EXAMPLE 9.2 Function of Collector (Strut)......Page 555
EXAMPLE 9.3 Wood Structural Panel Diaphragm Nailing......Page 558
Example 9.4 Diaphragm Load Cases......Page 562
Transverse Direction......Page 563
Longitudinal Direction......Page 564
EXAMPLE 9.5 Diaphragm Chord—Double Top Plate......Page 567
EXAMPLE 9.6 Diaphragm Chord—Wall Steel......Page 568
EXAMPLE 9.7 Header Acting as a Diaphragm Chord......Page 569
EXAMPLE 9.8 Wood Structural Panel Roof Diaphragm......Page 571
EXAMPLE 9.9 Distribution of Shear in a Wood Shearwall......Page 579
EXAMPLE 9.10 Distribution of Shear in a Concrete or Masonry Shearwall......Page 580
EXAMPLE 9.11 Lintel and Header between Shearwalls......Page 581
Method 1: FBD Approach......Page 584
Method 2: Collector Force Diagram......Page 585
EXAMPLE 9.13 Diaphragm De.ections and Span-to-Width Ratios......Page 588
Diaphragm Proportions......Page 589
Bending......Page 590
Chord Slip......Page 591
Total Deflection......Page 592
9.9 Diaphragms with Interior Shearwalls......Page 593
Alternate shearwall reaction calculation:......Page 595
Diaphragm Chord Forces......Page 596
EXAMPLE 9.16 Building with Interior Collector......Page 598
Collector Force Adjustment......Page 599
EXAMPLE 9.17 Effectiveness of Interior Shearwalls......Page 600
9.11 Diaphragm Flexibility......Page 601
EXAMPLE 9.19 Rotation in an Open Sided Building......Page 603
10.1 Introduction......Page 611
10.2 Basic Shearwall Action......Page 612
EXAMPLE 10.2 Wood Structural Panel Shearwalls......Page 615
EXAMPLE 10.3 Height-to-Width Ratios for Wood-Frame Shearwalls......Page 618
10.5 Shearwall Chord Members......Page 621
Diaphragm Reactions......Page 624
Shearwall 1......Page 625
Shearwall 2......Page 626
Tension Chord......Page 627
Compression Chord......Page 630
EXAMPLE 10.6 Shearwall Designed for Force Transfer around Openings......Page 633
EXAMPLE 10.7 Perforated Shearwall Design......Page 638
10.8 Anchorage Considerations......Page 643
10.9 Vertical (Gravity) Loads......Page 644
EXAMPLE 10.10 Anchorage for Shearwall Shear......Page 647
EXAMPLE 10.11 Shearwall De.ection......Page 653
10.12 Lateral Forces Perpendicular to a Wall......Page 655
EXAMPLE 10.13 Anchorage for Perpendicular to Wall Force......Page 656
11.2 Types of Fasteners and Connections......Page 665
EXAMPLE 11.1 Typical Wood Connections Subjected to Shear......Page 666
EXAMPLE 11.2 Typical Wood Connections Loaded in Withdrawal and Tension......Page 668
EXAMPLE 11.3 Examples of Different Dowel Bearing Strengths in the Same Connection......Page 675
11.5 Dowel Bearing Strength......Page 677
EXAMPLE 11.5 NDS Dowel Bearing Values......Page 679
EXAMPLE 11.6 Dowel Bearing Strength in Glulam Beams......Page 680
EXAMPLE 11.7 Formation of a Plastic Hinge in a Steel Beam......Page 682
EXAMPLE 11.8 Formation of Two Plastic Hinges in a Steel Beam......Page 684
EXAMPLE 11.9 Yield Modes......Page 687
Double-Shear Connections......Page 688
12.1 Introduction......Page 693
12.4 Yield Limit Equations for Nails......Page 699
EXAMPLE 12.2 Yield Limit Equations for Nail in Single Shear......Page 702
12.5 Applications of Yield Limit Equations......Page 706
EXAMPLE 12.4 Yield Limit Equations for Single-Shear Wood-to-Metal Nail Connection......Page 708
EXAMPLE 12.5 Yield Limit Equations for Single-Shear Plywood-to-Lumber Nail Connection......Page 711
Lateral Resistance in Side Grain......Page 717
Lateral Resistance in End Grain......Page 718
EXAMPLE 12.7 Toenail Connection......Page 719
12.7 Design Problem: Nail Connection for Knee Brace......Page 721
Adjustment Factors......Page 723
EXAMPLE 12.9 Top Plate Splice......Page 727
Splice Connection......Page 728
Splice Connection......Page 732
12.9 Design Problem: Shearwall Chord Tie......Page 734
Nail Connection......Page 736
Nail Connection (LRFD)......Page 737
12.10 Design Problem: Laterally Loaded Toenail......Page 738
12.11 Design Problem: Laterally Loaded Connection in End Grain......Page 742
Withdrawal from End Grain—Not Permitted......Page 745
Toenail Loaded in Withdrawal......Page 746
EXAMPLE 12.14 Basic Withdrawal Connection......Page 748
EXAMPLE 12.15 Toenail Withdrawal Connection......Page 749
EXAMPLE 12.16 Nail Spacing......Page 752
13.1 Introduction......Page 763
13.2 Bolt Connections......Page 764
EXAMPLE 13.2 Bolt Yield Limit Equations for Single Shear......Page 768
Summary of Known Values......Page 771
Yield Limit Equations......Page 772
EXAMPLE 13.4 Reference Design Value: Single-Shear Bolt in Wood-to-Metal Connection......Page 773
Coefficients for Yield Limit Equations......Page 774
Yield Limit Equations......Page 775
13.4 Bolt Yield Limit Equations for Double Shear......Page 776
Summary of Known Values......Page 778
Coefficients for Yield Limit Equations......Page 779
13.5 Adjustment Factors for Bolts......Page 780
Wet-Service Factors (CM)......Page 783
EXAMPLE 13.8 Formula for Group Action Factor Cg......Page 786
EXAMPLE 13.9 Geometry factor C......Page 788
EXAMPLE 13.10 Bolt Spacing Requirements: Parallel-to-Grain Loading......Page 790
EXAMPLE 13.11 Bolt Spacing Requirements: Perpendicular-to-Grain Loading......Page 791
EXAMPLE 13.12 Tension and Shear Stresses at a Multiple-Fastener Connection......Page 794
13.7 Design Problem: Multiple-Bolt Tension Connection......Page 796
13.8 Design Problem: Bolted Chord Splice for Diaphragm......Page 802
Bolt Design—Part 2......Page 805
Adjusted ASD capacity based on tension and shear stresses in one 2 6 member:......Page 806
Bolt Design—Part 1......Page 807
Bolt Design—Part 2......Page 808
EXAMPLE 13.15 Shear Stresses at a Connection......Page 810
13.10 Design Problem: Bolt Connection for Diagonal Brace......Page 811
Bolt Capacity......Page 813
Adjusted Design Shear for ASD......Page 815
13.11 Lag Bolt Connections......Page 817
EXAMPLE 13.17 Lag Bolt Connections......Page 818
EXAMPLE 13.18 Installation of Lag Bolt......Page 820
Summary of Known Values......Page 822
Coefficients for Yield Limit Equations......Page 823
13.13 Adjustment Factors for Lag Bolts in Shear Connections......Page 824
Lateral Resistance in End Grain......Page 828
13.14 Design Problem: Collector (Strut) Splice with Lag Bolts......Page 829
Trial Design (ASD)......Page 830
Final Design......Page 831
Trial Design (LRFD)......Page 833
EXAMPLE 13.22 Lag Bolt Withdrawal Connection......Page 837
EXAMPLE 13.23 Split Ring and Shear Plate Connectors......Page 840
EXAMPLE 13.24 Typical Arch Connection Using Timber Connectors......Page 842
EXAMPLE 13.25 Shear Plate Connection......Page 843
14.2 Connection Details......Page 857
Beam-to-Column Connections......Page 859
Beam Saddle Connection......Page 860
Beam Face Hanger Connection......Page 861
Beam Face Clip Connection......Page 862
Beam Connection for Uplift......Page 863
Beam Connection to Continuous Column......Page 865
Beam with Notch in Tension Side......Page 866
Beam with End Notch......Page 867
Inclined Beam-Lower Support Details......Page 868
Inclined Beam-Upper Support Details......Page 869
Suspending Multiple Loads from Beam......Page 870
Suspending Isolated Loads from Beam......Page 871
Truss Heel Connection......Page 872
Additional Truss Joint Considerations......Page 873
14.3 Design Problem: Beam-to-Column Connection......Page 875
EXAMPLE 14.2 U-Bracket Column Cap......Page 876
Lateral Force (ASD)......Page 877
Connection Details (ASD and LRFD)......Page 878
U-Bracket Strength (ASD)......Page 879
Vertical Load (LRFD)......Page 882
14.4 Cantilever Beam Hinge Connection......Page 883
Framing Anchors......Page 887
Diaphragm-to-Wall Anchors......Page 888
14.6 References......Page 889
15.2 Anchorage Summary......Page 891
Collector Connection to Shearwall......Page 892
Diaphragm Chord Connection......Page 893
EXAMPLE 15.2 Anchorage Forces Perpendicular to Wall......Page 895
15.3 Connection Details—Diaphragm to Wood-Frame Wall......Page 896
Transverse Wall Anchorage......Page 897
Longitudinal Wall Anchorage......Page 898
Wall Anchorage Force Perpendicular-to-Wall......Page 899
Parallel-to-Wall Forces......Page 900
Perpendicular-to-Wall Forces......Page 903
EXAMPLE 15.5 Typical Ledger Anchorage to Masonry Wall......Page 907
Wall Anchorage Force (Perpendicular to wall)......Page 909
Anchorage......Page 910
Parallel-to-Wall Force (Diaphragm Shear)......Page 918
Perpendicular-to-Wall Force (Wind, Seismic, or Code Minimum)......Page 919
Subdiaphragm Anchorage......Page 920
15.5 Subdiaphragm Anchorage of Concrete and Masonry Walls......Page 921
EXAMPLE 15.9 Diaphragm without Continuous Framing......Page 922
EXAMPLE 15.10 Subdiaphragm Analysis......Page 923
EXAMPLE 15.11 Alternate Subdiaphragm Con.gurations......Page 926
Given Information......Page 928
Entire Roof Diaphragm......Page 929
Subdiaphragm Anchorage of Longitudinal Masonry Wall......Page 931
Subdiaphragm Anchorage of Transverse Masonry Wall......Page 934
16.2 Seismic Forces—Regular Structures......Page 937
EXAMPLE 16.1 Regular Structure......Page 938
EXAMPLE 16.2 Out-of-Plane Offset Added to a Regular Structure......Page 945
Sliding......Page 951
Moment Stability......Page 952
EXAMPLE 16.4 Overturning at Base of Shearwall......Page 953
EXAMPLE 16.5 Overturning Requirement for Wind—General......Page 956
Compression Chord......Page 958
16.7 Overturning—Seismic......Page 959
Compression Chord—Second Equation......Page 961
EXAMPLE 16.7 Seismic Overturning Requirements—Irregular Structures......Page 963
Load Combinations......Page 964
16.8 Lateral Analysis of Nonrectangular Buildings......Page 965
EXAMPLE 16.8 Lateral Analysis of Nonrectangular Buildings......Page 966
Lateral Forces in N-S Direction......Page 967
Lateral Forces in E-W Direction......Page 969
EXAMPLE 16.10 Diaphragm Classi.cation......Page 971
Diaphragm Deflection......Page 972
Diaphragm Term 3—Panel Nail Slip......Page 973
Story Drift Calculation......Page 974
Shearwall Term 2—Panel Shear Deformation......Page 975
Total Shearwall Deflection and Average Story Drift......Page 976
EXAMPLE 16.11 General Rigid Diaphragm Analysis......Page 977
Locating the Center of Mass......Page 978
Resulting Longitudinal Forces......Page 979
1.2 Types of Buildings......Page 40
1.3 Required and Recommended References......Page 42
1.4 Building Codes and Design Criteria......Page 45
1.5 ASD and LRFD......Page 46
1.6 Organization of the Text......Page 47
1.7 Structural Calculations......Page 48
1.9 Fire-Resistive Requirements......Page 50
1.11 References......Page 51
2.2 Dead Loads......Page 55
2.3 Live Loads......Page 59
Roof live loads......Page 62
2.4 Snow Loads......Page 66
2.7 Rain Loads......Page 73
2.9 Self-straining Loads......Page 74
2.10 Wind Loads—Introduction......Page 75
2.11 Wind Forces—Main Wind Force Resisting System......Page 80
2.12 Wind Forces—Components and Cladding......Page 89
2.13 Seismic Forces—Introduction......Page 94
2.14 Seismic Forces......Page 99
Redundancy/reliability factor......Page 100
Base shear calculation......Page 101
Design spectral response accelerations SDS and SD1......Page 102
Importance factor, I......Page 109
Response modi.cation factor, R......Page 110
2.15 Seismic Forces—Primary System......Page 113
2.16 Seismic Forces—Wall Components......Page 120
2.17 Load Combinations......Page 125
ASD load combinations......Page 126
LRFD load combinations......Page 127
Determining applicable loads......Page 128
stress increases......Page 129
2.18 Serviceability/De.ection Criteria......Page 130
2.19 References......Page 136
2.20 Problems......Page 137
3.3 Structures Subject to Lateral Forces......Page 149
3.4 Lateral Forces in Buildings with Diaphragms and Shearwalls......Page 156
3.5 Design Problem: Lateral Forces on One-Story Building......Page 162
3.6 Design Problem: Lateral Forces on Two-Story Building......Page 177
3.8 Problems......Page 197
NDS......Page 206
NDS Supplement......Page 207
Design Manual......Page 208
4.3 Methods of Grading Structural Lumber......Page 209
4.4 In-Grade Versus Clear Wood Design Values......Page 211
4.5 Species and Species Groups......Page 213
4.6 Cellular Makeup......Page 215
4.7 Moisture Content and Shrinkage......Page 216
4.8 Effect of Moisture Content on Lumber Sizes......Page 224
4.9 Durability of Wood and the Need for Pressure Treatment......Page 225
4.10 Growth Characteristics of Wood......Page 228
4.11 Sizes of Structural Lumber......Page 230
4.13 General Notation......Page 237
4.14 Wet Service Factor CM......Page 243
4.15 Load Duration Factor CD (ASD Only)......Page 244
4.16 Time Effect Factor (LRFD Only)......Page 248
4.18 Repetitive Member Factor Cr......Page 250
4.20 Temperature Factor Ct......Page 251
4.22 Resistance Factor (LRFD Only)......Page 252
4.25 Future Directions in Wood Design......Page 264
4.26 References......Page 265
4.27 Problems......Page 266
5.3 Resawn Glulam......Page 276
5.4 Fabrication of Glulams......Page 277
5.5 Grades of Glulam Members......Page 283
Load duration factor (CD)—ASD only......Page 288
Volume factor (Cv)......Page 289
5.9 Problems......Page 295
6.3 Lateral Stability......Page 312
6.7 Design Summary......Page 336
6.8 Bearing at Supports......Page 338
6.9 Design Problem: Sawn Beam......Page 345
6.18 Lumber Roof and Floor Decking......Page 381
6.19 Fabricated Wood Components......Page 383
6.21 Problems......Page 393
7.2 Axial Tension Members......Page 406
7.4 Columns......Page 415
7.5 Detailed Analysis of Slenderness Ratio......Page 423
7.7 Design Problem: Capacity of a Glulam Column......Page 434
7.9 Built-Up Columns......Page 443
Net compressive stress......Page 446
7.12 Combined Bending and Compression......Page 456
7.14 Design Problem: Beam-Column Action in a Stud Wall Using LRFD......Page 468
7.16 Design for Minimum Eccentricity......Page 484
7.18 References......Page 491
7.19 Problems......Page 492
8.2 Panel Dimensions and Installation Recommendations......Page 503
8.4 Species Groups for Plywood......Page 508
8.5 Veneer Grades......Page 511
8.6 Exposure Durability Classi.cations......Page 513
8.7 Plywood Grades......Page 514
8.8 Other Wood Structural Panels......Page 517
8.9 Roof Sheathing......Page 520
8.10 Design Problem: Roof Sheathing......Page 523
8.13 Wall Sheathing and Siding......Page 532
8.14 Stress Calculations for Wood Structural Panels......Page 536
8.16 Problems......Page 547
9.2 Basic Diaphragm Action......Page 552
9.3 Shear Resistance......Page 557
9.4 Diaphragm Chords......Page 566
9.5 Design Problem: Roof Diaphragm......Page 570
9.6 Distribution of Lateral Forces in a Shearwall......Page 578
9.7 Collector (Strut) Forces......Page 582
9.8 Diaphragm De.ections......Page 587
9.10 Interior Shearwalls with Collectors......Page 597
9.12 References......Page 604
9.13 Problems......Page 605
10.3 Shearwalls Using Wood Structural Panels......Page 613
10.4 Other Sheathing Materials......Page 619
10.6 Design Problem: Shearwall......Page 623
10.7 Alternate Shearwall Design Methods......Page 632
10.10 Lateral Forces Parallel to a Wall......Page 645
10.11 Shearwall De.ection......Page 649
10.14 Problems......Page 657
11.3 Yield Model for Laterally Loaded Fasteners......Page 671
11.4 Factors Affecting Strength in Yield Model......Page 674
11.6 Plastic Hinge in Fastener......Page 681
11.7 Yield Limit Mechanisms......Page 685
11.9 Problems......Page 690
12.2 Types of Nails......Page 694
12.3 Power-Driven Nails and Staples......Page 697
12.6 Adjustment Factors for Laterally Loaded Nails......Page 714
12.8 Design Problem: Top Plate Splice......Page 726
12.12 Nail Withdrawal Connections......Page 744
12.13 Combined Lateral and Withdrawal Loads......Page 750
12.14 Spacing Requirements......Page 751
12.16 References......Page 755
12.17 Problems......Page 756
13.3 Bolt Yield Limit Equations for Single Shear......Page 767
13.6 Tension and Shear Stresses at a Multiple Fastener Connection......Page 792
13.9 Shear Stresses in a Beam at a Connection......Page 809
13.12 Yield Limit Equations for Lag Bolts......Page 821
13.15 Lag Bolts in Withdrawal......Page 835
13.16 Combined Lateral and Withdrawal Loads......Page 838
13.17 Split Ring and Shear Plate Connectors......Page 839
13.19 Problems......Page 845
14.5 Prefabricated Connection Hardware......Page 885
15.4 Connection Details—Diaphragm to Concrete or Masonry Walls......Page 905
15.6 Design Problem: Subdiaphragm......Page 927
15.7 References......Page 935
16.3 Seismic Forces—Irregular Structures......Page 939
16.5 Overturning—Review......Page 950
16.6 Overturning—Wind......Page 955
16.9 Rigid Diaphragm Analysis......Page 970
16.11 References......Page 981
Appendix A. Equivalent Uniform Weights of Wood Framing......Page 983
Appendix B. Weights of Building Materials......Page 985
Appendix C. Selected Tables and Figures from the International Building Code, 2006 Edition......Page 989
Sl Units......Page 1054
Index......Page 1058




نظرات کاربران