ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Design of machinery : an introduction to the synthesis and analysis of mechanisms and machines

دانلود کتاب طراحی ماشین آلات: مقدمه ای بر سنتز و تجزیه و تحلیل مکانیسم ها و ماشین ها

Design of machinery : an introduction to the synthesis and analysis of mechanisms and machines

مشخصات کتاب

Design of machinery : an introduction to the synthesis and analysis of mechanisms and machines

ویرایش: Sixth 
نویسندگان:   
سری: McGraw-Hill series in mechanical engineering 
ISBN (شابک) : 9781260113310, 1260431304 
ناشر:  
سال نشر: 2020 
تعداد صفحات: 897 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 87 مگابایت 

قیمت کتاب (تومان) : 45,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 16


در صورت تبدیل فایل کتاب Design of machinery : an introduction to the synthesis and analysis of mechanisms and machines به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب طراحی ماشین آلات: مقدمه ای بر سنتز و تجزیه و تحلیل مکانیسم ها و ماشین ها نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب طراحی ماشین آلات: مقدمه ای بر سنتز و تجزیه و تحلیل مکانیسم ها و ماشین ها

تعدادی از برنامه‌های نوشته‌شده توسط نویسنده که همراه کتاب ارائه می‌شوند، برای بهبود رابط کاربری و قابلیت استفاده، کاملاً بازنویسی شده‌اند و اکنون با جدیدترین سیستم‌عامل‌ها و رایانه‌ها سازگار هستند. برنامه‌های Fourbar، Fivebar، Sixbar و Slider ترکیب شده‌اند. در یک برنامه جدید به نام Linkages که همه کارهای آن برنامه ها را انجام می دهد و ویژگی های جدیدی به آن اضافه شده است. Program Dynacam نیز کاملاً بازنویسی شده است و بسیار بهبود یافته است. Programs Engine و Matrix بدون تغییر هستند. این برنامه های کامپیوتری برای افزودن ویژگی ها و پیشرفت ها مرتباً مورد بازبینی قرار می گیرند. "--


توضیحاتی درمورد کتاب به خارجی

"Several of the author-written programs that come with the book have been completely rewritten to improve their interface and usability, and they are now compatible with the latest operating systems and computers. The programs Fourbar, Fivebar, Sixbar, and Slider have been combined in a new program called Linkages that does everything those programs collectively did and has some new features added. Program Dynacam also has been completely rewritten and is much improved. Programs Engine and Matrix are unchanged. These computer programs undergo frequent revision to add features and enhancements"--



فهرست مطالب

Cover
Title Page
Copyright Page
About The Author
Dedication
Preface to the Sixth Edition
Preface to the First Edition
Contents
VIDEO CONTENTS
Part I Kinematics of Mechanisms
	Chapter 1 Introduction
		1.0 Purpose
		1.1 Kinematics and Kinetics
		1.2 Mechanisms and Machines
		1.3 A Brief History of Kinematics
		1.4 Applications of Kinematics
		1.5 A Design Process
			Design, Invention, Creativity
			Identification of Need
			Background Research
			Goal Statement
			Performance Specifications
			Ideation and Invention
			Analysis
			Selection
			Detailed Design
			Prototyping and Testing
			Production
		1.6 Other Approaches to Design
			Axiomatic Design
		1.7 Multiple Solutions
		1.8 Human Factors Engineering
		1.9 The Engineering Report
		1.10 Units
		1.11 A Design Case Study
			Educating for Creativity in Engineering
		1.12 What’s to Come
		1.13 Resources With This Text
			Programs
			Videos
		1.14 References
		1.15 Bibliography
	Chapter 2 Kinematics Fundamentals
		2.0 Introduction
		2.1 Degrees of Freedom (DOF) or Mobility
		2.2 Types of Motion
		2.3 Links, Joints, and Kinematic Chains
		2.4 Drawing Kinematic Diagrams
		2.5 Determining Degree of Freedom or Mobility
			Degree of Freedom in Planar Mechanisms
			Degree of Freedom (Mobility) in Spatial Mechanisms
		2.6 Mechanisms and Structures
		2.7 Number Synthesis
		2.8 Paradoxes
		2.9 Isomers
		2.10 Linkage Transformation
		2.11 Intermittent Motion
		2.12 Inversion
		2.13 The Grashof Condition
			Classification of the Fourbar Linkage
		2.14 Linkages of More Than Four Bars
			Geared Fivebar Linkages
			Sixbar Linkages
			Grashof-Type Rotatability Criteria for Higher-Order Linkages
		2.15 Springs as Links
		2.16 Compliant Mechanisms
		2.17 Micro Electro-Mechanical Systems (MEMS)
		2.18 Practical Considerations
			Pin Joints Versus Sliders and Half Joints
			Cantilever or Straddle Mount?
			Short Links
			Bearing Ratio
			Commercial Slides
			Linkages Versus Cams
		2.19 Motors and Drivers
			Electric Motors
			Air and Hydraulic Motors
			Air and Hydraulic Cylinders
			Solenoids
		2.20 References
		2.21 Problems
	Chapter 3 Graphical Linkage Synthesis
		3.0 Introduction
		3.1 Synthesis
		3.2 Function, Path, and Motion Generation
		3.3 Limiting Conditions
		3.4 Position Synthesis
			Two-Position Synthesis
			Three-Position Synthesis with Specified Moving Pivots
			Three-Position Synthesis with Alternate Moving Pivots
			Three-Position Synthesis with Specified Fixed Pivots
			Position Synthesis for More Than Three Positions
		3.5 Quick-Return Mechanisms
			Fourbar Quick-Return
			Sixbar Quick-Return
		3.6 Coupler Curves
			Symmetrical-Linkage Coupler Curves
		3.7 Cognates
			Roberts-Chebychev Theorem
			Parallel Motion
			Geared Fivebar Cognates of the Fourbar
		3.8 Straight-Line Mechanisms
			Designing Optimum Straight-Line Fourbar Linkages
		3.9 Dwell Mechanisms
			Single-Dwell Linkages
			Double-Dwell Linkages
		3.10 Other Useful Linkages
			Constant Velocity Piston Motion
			Large Angular Excursion Rocker Motion
			Remote Center Circular Motion
		3.11 References
		3.12 Bibliography
		3.13 Problems
		3.14 Projects
	Chapter 4 Position Analysis
		4.0 Introduction
		4.1 Coordinate systems
		4.2 Position and Displacement
			Position
			Coordinate Transformation
			Displacement
		4.3 Translation, Rotation, and Complex Motion
			Translation
			Rotation
			Complex Motion
			Theorems
		4.4 Graphical Position Analysis of Linkages
		4.5 Algebraic Position Analysis of Linkages
			Vector Loop Representation of Linkages
			Complex Numbers as Vectors
			The Vector Loop Equation for a Fourbar Linkage
		4.6 The Fourbar Crank-Slider Position Solution
		4.7 The Fourbar Slider-Crank Position Solution
		4.8 An Inverted Crank-Slider Position Solution
		4.9 Linkages of More Than Four Bars
			The Geared Fivebar Linkage
			Sixbar Linkages
		4.10 Position of Any Point on a Linkage
		4.11 Transmission Angles
			Extreme Values of the Transmission Angle
		4.12 Toggle Positions
		4.13 Circuits and Branches in Linkages
		4.14 Newton-Raphson Solution Method
			One-Dimensional Root-Finding (Newton’s Method)
			Multidimensional Root-Finding (Newton-Raphson Method)
			Newton-Raphson Solution for the Fourbar Linkage
			Equation Solvers
		4.15 References
		4.16 Problems
	Chapter 5 Analytical Linkage Synthesis
		5.0 Introduction
		5.1 Types of Kinematic Synthesis
		5.2 Two-Position Synthesis for Rocker Output
		5.3 Precision Points
		5.4 Two-Position Motion Generation by Analytical Synthesis
		5.5 Comparison of Analytical and Graphical Two-Position Synthesis
		5.6 Simultaneous Equation Solution
		5.7 Three-Position Motion Generation by Analytical Synthesis
		5.8 Comparison of Analytical and Graphical Three-Position Synthesis
		5.9 Synthesis for a Specified Fixed Pivot Location
		5.10 Center-Point and Circle-Point Circles
		5.11 Four- and Five-Position Analytical Synthesis
		5.12 Analytical Synthesis of a Path Generator with Prescribed Timing
		5.13 Analytical Synthesis of a Fourbar Function Generator
		5.14 Other Linkage Synthesis Methods
			Precision Point Methods
			Coupler Curve Equation Methods
			Optimization Methods
		5.15 References
		5.16 Problems
	Chapter 6 Velocity Analysis
		6.0 Introduction
		6.1 Definition of Velocity
		6.2 Graphical Velocity Analysis
		6.3 Instant Centers of Velocity
		6.4 Velocity Analysis with Instant Centers
			Angular Velocity Ratio
			Mechanical Advantage
			Using Instant Centers in Linkage Design
		6.5 Centrodes
			A “Linkless” Linkage
			Cusps
		6.6 Velocity of Slip
		6.7 Analytical Solutions for Velocity Analysis
			The Fourbar Pin-Jointed Linkage
			The Fourbar Crank-Slider
			The Fourbar Slider-Crank
			The Fourbar Inverted Crank-Slider
		6.8 Velocity Analysis of the Geared Fivebar Linkage
		6.9 Velocity of Any Point on a Linkage
		6.10 References
		6.11 Problems
	Chapter 7 Acceleration Analysis
		7.0 Introduction
		7.1 Definition of Acceleration
		7.2 Graphical Acceleration Analysis
		7.3 Analytical Solutions for Acceleration Analysis
			The Fourbar Pin-Jointed Linkage
			The Fourbar Crank-Slider
			The Fourbar Slider-Crank
			Coriolis Acceleration
			The Fourbar Inverted Crank-Slider
		7.4 Acceleration Analysis of the Geared Fivebar Linkage
		7.5 Acceleration of Any Point on a Linkage
		7.6 Human Tolerance of Acceleration
		7.7 Jerk
		7.8 Linkages of N Bars
		7.9 Reference
		7.10 Problems
		7.11 Virtual Laboratory
	Chapter 8 Cam Design
		8.0 Introduction
		8.1 Cam Terminology
			Type of Follower Motion
			Type of Joint Closure
			Type of Follower
			Type of Cam
			Type of Motion Constraints
			Type of Motion Program
		8.2 S V A J Diagrams
		8.3 Double-Dwell Cam Design—Choosing S V A J Functions
			The Fundamental Law of Cam Design
			Simple Harmonic Motion (SHM)
			Cycloidal Displacement
			Combined Functions
			The SCCA Family of Double-Dwell Functions
			Polynomial Functions
			Double-Dwell Applications of Polynomials
		8.4 Single-Dwell Cam Design—Choosing S V A J Functions
			Single-Dwell Applications of Polynomials
			Effect of Asymmetry on the Rise-Fall Polynomial Solution
		8.5 Critical Path Motion (CPM)
			Polynomials Used for Critical Path Motion
		8.6 Sizing the Cam—Pressure Angle and Radius of Curvature
			Pressure Angle—Translating Roller Followers
			Choosing a Prime Circle Radius
			Overturning Moment—Translating Flat-Faced Follower
			Radius of Curvature—Translating Roller Follower
			Radius of Curvature—Translating Flat-Faced Follower
		8.7 Practical Design Considerations
			Translating or Oscillating Follower?
			Force- or Form-Closed?
			Radial or Axial Cam?
			Roller or Flat-Faced Follower?
			To Dwell or Not to Dwell?
			To Grind or Not to Grind?
			To Lubricate or Not to Lubricate?
		8.8 References
		8.9 Problems
		8.10 Virtual Laboratory
		8.11 Projects
	Chapter 9 Gear Trains
		9.0 Introduction
		9.1 Rolling Cylinders
		9.2 The Fundamental Law of Gearing
			The Involute Tooth Form
			Pressure Angle
			Changing Center Distance
			Backlash
		9.3 Gear Tooth Nomenclature
		9.4 Interference and Undercutting
			Unequal-Addendum Tooth Forms
		9.5 Contact Ratio
		9.6 Gear Types
			Spur, Helical, and Herringbone Gears
			Worms and Worm Gears
			Rack and Pinion
			Bevel and Hypoid Gears
			Noncircular Gears
			Belt and Chain Drives
		9.7 Simple Gear Trains
		9.8 Compound Gear Trains
			Design of Compound Trains
			Design of Reverted Compound Trains
			An Algorithm for the Design of Compound Gear Trains
		9.9 Epicyclic or Planetary Gear Trains
			The Tabular Method
			The Formula Method
		9.10 Efficiency of Gear Trains
		9.11 Transmissions
		9.12 Differentials
		9.13 References
		9.14 Bibliography
		9.15 Problems
Part II Dynamics of Machinery
	Chapter 10 Dynamics Fundamentals
		10.0 Introduction
		10.1 Newton’s Laws of Motion
		10.2 Dynamic Models
		10.3 Mass
		10.4 Mass Moment and Center of Gravity
		10.5 Mass Moment of Inertia (Second Moment of Mass)
		10.6 Parallel Axis Theorem (Transfer Theorem)
		10.7 Determining Mass Moment of Inertia
			Analytical Methods
			Experimental Methods
		10.8 Radius of Gyration
		10.9 Modeling Rotating Links
		10.10 Center of Percussion
		10.11 Lumped Parameter Dynamic Models
			Spring Constant
			Damping
		10.12 Equivalent Systems
			Combining Dampers
			Combining Springs
			Combining Masses
			Lever and Gear Ratios
		10.13 Solution Methods
		10.14 The Principle of d’Alembert
			Centrifugal Force
		10.15 Energy Methods—Virtual Work
		10.16 References
		10.17 Problems
	Chapter 11 Dynamic Force Analysis
		11.0 Introduction
		11.1 Newtonian Solution Method
		11.2 Single Link in Pure Rotation
		11.3 Force Analysis of A Threebar Crank-Slide Linkage
		11.4 Force Analysis of a Fourbar Linkage
		11.5 Force Analysis of a Fourbar Crank-Slider Linkage
		11.6 Force Analysis of the Inverted Crank-Slider
		11.7 Force Analysis—Linkages with More Than Four Bars
		11.8 Shaking Force and Shaking Moment
		11.9 Program Linkages
		11.10 Torque Analysis by an Energy Method
		11.11 Controlling Input Torque—Flywheels
		11.12 A Linkage Force Transmission Index
		11.13 Practical Considerations
		11.14 Reference
		11.15 Problems
		11.16 Virtual Laboratory
		11.17 Projects
	Chapter 12 Balancing
		12.0 Introduction
		12.1 Static Balance
		12.2 Dynamic Balance
		12.3 Balancing Linkages
			Complete Force Balance of Linkages
		12.4 Effect of Balancing on Shaking and Pin Forces
		12.5 Effect of Balancing on Input Torque
		12.6 Balancing the Shaking Moment in Linkages
		12.7 Measuring and Correcting Imbalance
		12.8 References
		12.9 Problems
		12.10 Virtual Laboratory
	Chapter 13 Engine Dynamics
		13.0 Introduction
		13.1 Engine Design
		13.2 Slider-Crank Kinematics
		13.3 Gas Force and Gas Torque
		13.4 Equivalent Masses
		13.5 Inertia and Shaking Forces
		13.6 Inertia and Shaking Torques
		13.7 Total Engine Torque
		13.8 Flywheels
		13.9 Pin Forces in the Single-Cylinder Engine
		13.10 Balancing the Single-Cylinder Engine
			Effect of Crankshaft Balancing on Pin Forces
		13.11 Design Trade-offs and Ratios
			Conrod/Crank Ratio
			Bore/Stroke Ratio
			Materials
		13.12 Bibliography
		13.13 Problems
		13.14 Projects
	Chapter 14 Multicylinder Engines
		14.0 Introduction
		14.1 Multicylinder Engine Designs
		14.2 The Crank Phase Diagram
		14.3 Shaking Forces in Inline Engines
		14.4 Inertia Torque in Inline Engines
		14.5 Shaking Moment in Inline Engines
		14.6 Even Firing
			Two-Stroke Cycle Engine
			Four-Stroke Cycle Engine
		14.7 V ee Engine Configurations
		14.8 Opposed Engine Configurations
		14.9 Balancing Multicylinder Engines
			Secondary Harmonic Balancing of the Four-Cylinder Inline Engine
			A Perfectly Balanced Two-Cylinder Engine
		14.10 References
		14.11 Bibliography
		14.12 Problems
		14.13 Projects
	Chapter 15 Cam Dynamics
		15.0 Introduction
		15.1 Dynamic Force Analysis of the Force-Closed Cam-Follower
			Undamped Response
			Damped Response
		15.2 Resonance
		15.3 Kinetostatic Force Analysis of the Force-Closed Cam-Follower
		15.4 Kinetostatic Force Analysis of the Form-Closed Cam-Follower
		15.5 Kinetostatic Camshaft Torque
		15.6 Measuring Dynamic Forces and Accelerations
		15.7 Practical Considerations
		15.8 References
		15.9 Bibliography
		15.10 Problems
		15.11 Virtual Laboratory
	Chapter 16 Cam- and Servo-Driven Mechanisms
		16.0 Introduction
		16.1 Servomotors
		16.2 Servo Motion Control
			Servo Motion Functions
		16.3 Cam-Driven Linkages
		16.4 Servo-Driven Linkages
		16.5 Other Linkages
		16.6 Cam-Driven Versus Servo-Driven Mechanisms
			Flexibility
			Cost
			Reliability
			Complexity
			Robustness
			Packaging
			Load Capacity
		16.7 References
		16.8 Bibliography
		16.9 Problems
Appendix A Computer Programs
Appendix B Material Properties
Appendix C Geometric Properties
Appendix D Spring Data
Appendix E Coupler Curve Atlases
Appendix F Answers to Selected Problems
Appendix G Equations for Under- or Overbalanced Multicylinder Engines
Index
Downloads Index




نظرات کاربران