دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.]
نویسندگان: BINBOGA SIDDIK YARMAN
سری:
ISBN (شابک) : 9788770223805, 8770223807
ناشر: RIVER PUBLISHERS
سال نشر: 2022
تعداد صفحات: [654]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 126 Mb
در صورت تبدیل فایل کتاب DESIGN OF DIGITAL PHASE SHIFTERS FOR MULTIPURPOSE COMMUNICATION SYSTEMS second edition with... matlab design and analysis programs. به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی شیفترهای فاز دیجیتال برای سیستم های ارتباطی چند منظوره ویرایش دوم با ... برنامه های طراحی و آنالیز متلب. نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover Title - Design of Digital Phase Shifters for Multipurpose Communication Systems With MATLAB Design and Analysis Programs Contents Preface Readers of the Book Acknowledgement List of Figures List of Tables List of Abbreviations 1 Fundamentals of Digital Phase Shifters 1.1 Introduction 1.2 Concept of Digital Phase Shift 1.3 Digital Phase Bits 1.4 n-Bit Phase shifter 1.5 Phase Error 1.6 Practical Issues 1.7 Types of Digital Phase Shifters References 2 Antennas, Arrays, Beam Forming, and Beam Steering 2.1 Antenna and Its Definitions 2.2 Phased Arrays and Electronic Beam Forming 2.3 Electronic Beam Steering 2.4 MATLAB-Based ARRAY Package 2.5 Conclusion Appendix References 3 Scattering Parameters for Lossless Two-Ports 3.1 Introduction 3.2 Formal Definition of Scattering Parameters 3.3 Generation of Scattering Parameters for Linear Two-Ports 3.4 Transducer Power Gain in Forward and Backward Directions 3.5 Properties of the Scattering Parameters of Lossless Two-Ports 3.6 Blashke Products or All-Pass Functions 3.7 Possible Zeros of a Proper Polynomial f (p) 3.8 Transmission Zeros 3.9 Lossless Ladders 3.10 Further Properties of the Scattering Parameters of the Lossless Two-Ports 3.11 Transfer Scattering Parameters 3.12 Cascaded (or Tandem) Connections of Two-Ports 3.13 Construction of an n-Bit Phase Shifter by Cascading Phase-Shifting Cells 4 Transmission Lines as Phase Shifter 4.1 Ideal Transmission Lines 4.2 Time Domain Solutions of Voltage and Current Wave Equations 4.3 Model for a Two-Pair Wire Transmission Line as an Ideal TEM Line 4.4 Model for a Coaxial Cable as an Ideal TEM Line 4.5 Field Solutions for TEM Lines 4.6 Phasor Solutions for Ideal TEM Lines 4.7 Steady-State Time Domain Solutions for Voltage 4.8 Definition of the Major Parameters of a Transmission Line 4.9 Voltage and Current Expression in Terms of Incident and Reflected Waves 4.10 TEM Lines as Circuit or “Distributed” Elements 4.11 Voltage and Current Expressions at the Load-End 4.12 Voltage and Current Expressions at the Source-End; Input Reflection Coefficient on the z = L Plane 4.13 Output Reflection Coefficient at z = 0 Plane 4.14 Voltage Standing Wave Ratio: VSWR 4.15 Open Expressions for the Input and the Output Reflection 4.16 An Open-End TEM Line as a Capacitor 4.17 A Shorted TEM Line as an Inductor 4.18 A Quarter Wavelength TEM Line at Resonance Frequency 4.19 Open-Ended TEM Line with Arbitrary Length 4.20 Shorted TEM Line with Arbitrary Length 4.21 Ideal TEM Lines with No Reflection: Perfectly Matched and Mismatched Lines 4.22 Conclusion Appendix References 5 Loaded-Line Digital Phase Shifters 5.1 Loaded-Line Phase Shifters with Single Reactive Elements 5.2 Inductively Series Loaded-Line Digital Phase Shifter 5.3 Series Loaded-Line Digital Phase Shifter 5.4 Parallel Load Line Digital Phase Shifters with Transformer 5.5 A Perfectly Matched PLL-DPS Loaded with Tuned Circuits 5.6 Perfectly Matched PLL-DPS with Effective Inductor “L” 5.7 Reflection Phase Shifters Appendix References 6 Symmetric T-/PI-Sections as Phase Shifters 6.1 Scattering Parameters of a Symmetric T-Section 6.2 A Low-pass Symmetric T-Section Appendix References 7 180 Low-pass-Based T-Section Digital Phase Shifter Topology (LPT-DPS) 7.1 Solid-State Microwave Switches 7.2 Low-pass-Based Symmetric T-Section Digital Phase Shifter 7.3 Concept of Digital Phase Shift and Design Algorithm 7.4 Algorithm to Design LPT-DPS for the Phase Range 180 < = A < 0 7.5 Effect of Circuit Component Losses on the Electric 7.6 Algorithm to Compute Component Lossless of LPT-DPS 7.7 General Comments and Conclusion Appendix References 8 180 Low-pass-Based PI-Section Digital Phase Shifter Topology (LPI-DPS) 8.1 Low-pass-Based Symmetric PI-Section Digital Phase Shifter 8.2 Algorithm to Design a Low-pass-Based PI-Section Digital Phase Shifter 8.3 Algorithm to Design LPI-DPS for the Phase Range 180 < = A < 0 8.4 Algorithm to Compute Component Lossless of LPI-DPS 8.5 General Comments and Conclusion Appendix References 9 180 High-pass-Based T-Section Digital Phase Shifter Topology (HPT-DPS) 9.1 High-pass-Based Symmetric T-Section Digital Phase Shifter 9.2 Concept of Digital Phase Shift and Design Algorithm 9.3 Algorithm to Design HPT-DPS for the Phase Range 180 < = A < 0 9.4 Effect of Circuit Component Losses on the Electric 9.5 Algorithm: Design of a Lossy HPT-DPS 9.6 General Comments and Conclusion Appendix References 10 A Symmetric Lattice-Based Wideband Wide Phase Range Digital Phase Shifter Topology 10.1 Introduction 10.2 Properties of Lossless Symmetric Lattice Structures 10.3 A Lossless Symmetric Lattice Utilized as a Phase Shifter 10.4 Lagging LSLS 10.5 Leading LSLS 10.6 Switching Between the Lattice Topologies 10.7 Basic Algorithm to Design Ideal 3S-DPS Section at 0 = 1 10.8 Operation of 3S-DPS Topology 10.9 Practical Design Algorithm: Estimation of the Normalized Element Values 10.10 Analysis of the Phase Shifting Performance of 3S-DPS 10.11 Performance Measure of Digital Phase Shifters 10.12 Investigation of Unequal Phase Distributions Between the States 10.13 Practical Lossy Design of A 3D-DPS 10.14 Investigation of Unequal Phase Distribution Between the States 10.15 ON-Chip Inductor Design 10.16 Implementation and Performance Results of A Simple and Single Appendix References 11 360 T-Section Digital Phase Shifter 11.1 Derivation of Design Equations for a 360 T-Section 11.2 Algorithm to Design 360 T-Section Digital Phase Shifter 11.3 Unequal Distribution of the Phase Shift Between the States 11.4 Analysis of the Phase Performance of the 360 s T-Section 11.5 Algorithm: Design of a Lossy 360 T-Section DPS 11.6 Physical Implementation of 360 T-DPS Appendix References 12 360 PI-Section Digital Phase Shifter 12.1 Derivation of Design Equations for a 360 PI-Section 12.2 Algorithm to Design 360 PI-Section Digital Phase Shifter 12.3 Unequal Distribution of the Phase Shifts Between the States 12.4 Analysis of the Phase Performance of the 360 PI-Section 12.5 Algorithm: Design of a Lossy 360 PI-Section DPS 12.6 Physical Implementation of 360 PI-DPS Appendix References 13 180 High-pass-Based PI-Section Digital Phase Shifter 13.1 Derivation of Design Equations for a 180 PI-Section Digital Phase Shifter 13.2 Algorithm to Design 180 PI-Section Digital Phase Shifter 13.3 Analysis of the Phase Performance of the 360 13.4 Algorithm: Design of a Lossy 180 HPI Section DPS 13.5 Physical Implementation of 180 HPI-DPS Appendix References 14 A Wide Phase Range Compact T-Section Digital Phase Shifter Topology 14.1 Proposed Compact LC Ladder-Based Phase Shifter 14.1.1 Analysis and Design of the Simple and Compact LC Ladder Phase Shifter with Ideal Switches 14.1.2 Actual Performance Analysis 14.1.3 Practical Design Algorithm: Estimation of the Normalized Element Values of the Proposed Phase Shifter 14.2 Schematics Implementation and Performance Results 14.3 Conclusion References Index About the Author Back Cover