دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1 نویسندگان: Prashant Baredar, Vikas Khare, Savita Nema سری: ISBN (شابک) : 0128227184, 9780128227183 ناشر: Academic Press سال نشر: 2020 تعداد صفحات: 330 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 16 مگابایت
در صورت تبدیل فایل کتاب Design and Optimization of Biogas Energy Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی و بهینه سازی سیستم های انرژی بیوگاز نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
طراحی و بهینهسازی سیستمهای انرژی بیوگاز مروری بر برنامهریزی، پیادهسازی، ارزیابی و بهینهسازی سیستمهای بیوگاز، از تبدیل سوخت تا تولید نیرو، ارائه میکند. این کتاب عناصر اساسی سیستمهای انرژی زیستی را معرفی میکند و ویژگیهای سیستمهای بیوگاز را برجسته میکند. وضعیت فعلی پذیرش آنها در سطح جهانی و چالش های پیش روی طراحان و اپراتورها را مورد بحث قرار می دهد. روشهای اندازهگیری، شبیهسازی و مدلسازی مورد بحث قرار میگیرند، از جمله تجزیه و تحلیل پیش امکانسنجی، فرآیندهای تولید موجود، ادغام در سیستمهای انرژی ترکیبی، و استفاده از تجزیه و تحلیل دادههای بزرگ و مفاهیم نظریه بازی. همه فصلها شامل مثالها و تمرینهایی از زندگی واقعی برای نشان دادن موضوعات تحت پوشش است.
این کتاب فراتر از نظریه است و دانش عملی از روشها را برای دستیابی به راهحلهایی برای چالشهای کلیدی در این زمینه ارائه میدهد. این یک منبع ارزشمند برای محققان، پزشکان و دانشجویان فارغ التحصیل علاقه مند به توسعه فناوری های بیوگاز هوشمند، قابل اعتماد و پایدار است.
Design and Optimization of Biogas Energy Systems presents an overview on planning, implementing, assessing and optimizing biogas systems, from fuel conversion to power generation. The book introduces the fundamental elements of bioenergy systems, highlighting the specificities of biogas systems. It discusses the current state of their adoption at a global level and the challenges faced by designers and operators. Methods for sizing, simulating and modeling are discussed, including prefeasibility analysis, available production processes, integration into hybrid energy systems, and the application of Big Data analysis and game theory concepts. All chapters include real-life examples and exercises to illustrate the topics being covered.
The book goes beyond theory to offer practical knowledge of methods to reach solutions to key challenges in the field. This is a valuable resource for researchers, practitioners and graduate students interested in developing smart, reliable and sustainable biogas technologies.
Cover Design and Optimization of Biogas Energy Systems Copyright Contents 1 Biogas energy system 1.1 Introduction 1.2 Why biogas energy? 1.3 History of biogas system 1.4 Worldwide evaluation of biogas technology 1.5 Dissemination of biogas system 1.6 Factor hindering biogas system 1.7 Pros and cons of biogas system 1.7.1 Advantages 1.7.1.1 The leading standard reference in the industry for electricity generation from solid biogas 1.7.1.2 Environmental impact 1.7.1.3 Biogas is eco-friendly 1.7.1.4 Biogas generation reduces soil and water pollution 1.7.1.5 Biogas generation produces organic fertilizer 1.7.1.6 It is a simple and low-cost technology that encourages a circular economy 1.7.1.7 Healthy cooking alternative for developing areas 1.7.2 Disadvantages 1.7.2.1 Few technological advancements 1.7.2.2 Contains impurities 1.7.2.3 Effect of temperature on biogas production 1.7.2.4 Less suitable for dense metropolitan areas 1.8 Exercise References Further reading 2 Optimum sizing and modeling of biogas energy system 2.1 Prefeasibility analysis of biogas power plant 2.2 Decomposition of biogas 2.2.1 Anaerobic digestion 2.2.2 Anaerobic digestion system 2.2.3 Liquid manure handling system 2.3 Biogas production system 2.3.1 Waste collection 2.3.2 Pretreatment of waste 2.3.2.1 Pretreatment methods 2.3.2.2 Mechanical pretreatment 2.3.2.3 Thermal pretreatment 2.3.2.4 Chemical pretreatment 2.3.2.5 Combined pretreatment 2.3.2.6 Biological pretreatment 2.3.2.7 Enzymatic pretreatment 2.3.3 Mixing or homogenizing tank 2.3.3.1 Anaerobic digester tank 2.3.4 Gas utilization equipment 2.3.5 Safety equipment 2.3.6 Safety hazards 2.3.7 Potential advantages of controlled anaerobic digestion 2.3.8 Potential disadvantages of anaerobic digestion 2.3.9 Planning for future changes 2.4 Stages of biogas production 2.5 Biogas production processes 2.6 Digestible property of organic matter 2.7 Undesirable gases in biogas system 2.8 Multifunctional biogas system 2.8.1 Multiple use of resources 2.9 Exercise References 3 Biogas digester plant 3.1 General description and types 3.2 Component of biogas plant 3.3 Classification of biogas plant 3.3.1 Fixed-dome biogas plant with fixed and integrated gas storage chamber 3.3.1.1 Types of fixed-dome plants 3.3.2 Floating-drum plants 3.3.2.1 Water-jacket floating-drum plants 3.3.2.2 Types of floating-drum plants 3.3.3 Flexible bag biogas plant (balloon plants) 3.3.4 Anaerobic baffled reactor 3.3.5 Toilet-linked biogas plants 3.4 Functioning of biogas plant 3.4.1 What type of waste produces biogas? 3.4.2 What type of waste does not produce biogas? 3.4.2.1 Stratification (layering) of digester due to anaerobic fermentation 3.5 Installation of a biogas plant 3.5.1 Site selection (location of BGPs) 3.5.2 Selection of construction materials 3.5.3 Construction work 3.6 Operation and maintenance of biogas power plant 3.7 Finishing works and instructions to users 3.8 MATLAB simulation of biogas power plant 3.9 Design of biogas power plant by HOMER software 3.9.1 Modeling of biomass–solar energy through HOMER software 3.9.2 Result and discussion Exercise 4 Control system of biomass power plant 4.1 Automatic control of biomass power plant 4.2 Control strategies of biogas conversion system 4.2.1 Conventional control system with relay logic 4.2.2 Control of unit operation 4.2.3 Information and control signals 4.2.4 Biomass equipment control 4.2.5 Load frequency control 4.2.5.1 Transmission line protection 4.2.5.2 Two-terminal lines 4.2.5.3 Overcurrent protection 4.2.5.4 Phase-to-ground faults 4.2.5.5 Distance protection 4.2.5.6 Phase-to-phase faults 4.2.5.6.1 The impedance type 4.3 Reactive power control of biogas system 4.4 Power system stability of biogas power plant 4.4.1 Common control and optimization strategies 4.4.1.1 Online-measurements 4.4.1.2 Common online measurements 4.4.1.3 Innovative online-measurements 4.4.2 Programmable logic controller-based biogas plant parameters automatic control 4.4.2.1 Digester system design 4.4.2.2 Determining the energy demand 4.4.2.3 Determining the biogas production 4.4.2.4 Sizing the plant 4.4.2.4.1 Sizing the digester 4.4.2.4.2 Calculating the daily gas production (G) 4.4.2.4.3 Sizing the gasholder 4.4.2.5 Design in MATLAB 4.4.2.6 Case study 1: visualization and control of the processes at the Pacov Biogas Power Plant 4.4.2.6.1 Control system 4.4.2.7 Case study 2: analytical control of fermentation processes in biogas plants (Fig. 4.12): Lellbach Biogas Plant, 1.2... Exercise Reference 5 Reliability assessment of biogas power plant 5.1 Maintainability and availability function of biogas power plant 5.1.1 Maintainability 5.1.1.1 Biogas power plant component activity 5.1.1.2 Component repair time 5.1.1.3 System repair time 5.1.1.4 System downtime 5.1.1.5 Verification time 5.1.1.6 Availability 5.2 System reliability and redundancy technique of biogas power plant 5.2.1 Components in series in biogas power plant 5.2.1.1 Failure rate of series system 5.2.2 Effect of component reliability in series system 5.2.3 Effect of number of components in series system 5.2.4 Components in parallel 5.2.4.1 Failure rate of parallel system 5.2.5 Effect of component reliability of biogas power plant in parallel system 5.3 Biogas plant component failure and failure mode 5.3.1 Failure distribution model of biogas energy system 5.3.1.1 The Jelinski–Moranda model 5.3.1.2 Frequency of failure 5.3.1.3 Failure density 5.3.1.4 Biogas energy repairable system 5.3.1.5 Mean time to repair of biogas energy system 5.3.1.6 Practical model of biogas repairable system 5.3.2 Confidence level of biogas repairable system 5.3.2.1 Constant failure modes of biogas energy conversion system: Bayes’ theorem 5.3.2.1.1 Biogas model uncertainty 5.3.3 Reliability analysis of biogas energy system by fault tree analysis 5.3.4 Reliability measurement 5.4 Time-dependent hazard model and bathtub curve 5.5 Exercise Further reading 6 Biomass liquefaction 6.1 Introduction 6.1.1 Feedstock 6.1.2 Temperature and heating rate 6.1.3 Pressure 6.1.4 Residence time 6.1.5 Catalysts 6.2 Indirect liquefaction processes 6.2.1 Fischer–Tropsch synthesis 6.2.2 Methanol synthesis 6.3 Direct liquefaction processes 6.3.1 Basic aspects of direct liquefaction of biomass 6.3.1.1 Structure of biomass 6.3.1.2 Requirements of fuels 6.3.1.3 Conceivable reaction pathways 6.4 Other biomass liquefaction processes 6.4.1 Liquefaction and carbonization 6.4.2 Cryogenic separation and liquefaction 6.4.2.1 Purification of landfill gas 6.4.2.2 Upgrading of biogas 6.4.3 Liquefaction of upgraded biomethane 6.4.4 Liquefaction process of biogas using Aspen HYSYS simulation 6.4.5 Biogas liquefaction market 6.5 Process of gasification 6.5.1 How gasification works? 6.5.2 Five process of gasification 6.5.3 Pyrolysis 6.5.3.1 Cracking 6.5.3.2 Reduction 6.5.3.3 Combustion and drying 6.5.3.4 Types of gasifier 6.5.3.4.1 Updraught or countercurrent gasifier 6.5.3.4.2 Downdraught or cocurrent gasifier 6.5.3.4.3 Cross-draught gasifier 6.5.3.4.4 Fluidized bed gasifier Exercise 7 Advances in biogas power plant 7.1 Environmental assessment of biogas power plant 7.1.1 Carbon dioxide emissions 7.1.1.1 Methane emissions 7.1.2 Impact of feedstock and digestate storage and treatment 7.2 Economic assessment of biogas power plant by optimization technique 7.2.1 Basic economics problems 7.2.2 Supply function of biogas power plant 7.2.3 Total utility and marginal utility 7.2.4 Elasticity of electricity demand from biogas power plant 7.2.5 Cross elasticity 7.2.6 Demand forecasting of electricity 7.2.6.1 Optimization technique 7.2.6.2 Particle swarm optimization 7.2.7 MATLAB code of particle swarm optimization for above 12 variables 7.2.8 MATLAB code of big bang-big crunch optimization for 12 variables 7.3 Assessment of biogas power plant by game theory concept 7.3.1 Basic concept of game theory 7.3.2 Solution concepts 7.3.3 Assumptions 7.3.4 Nash equilibrium 7.3.5 Game theory in biogas renewable energy system 7.3.6 Mixed strategy Nash equilibrium 7.3.7 Algebraically 7.4 Assessment of biogas power plant by big data analysis 7.4.1 Biogas energy system by Hadoop environment 7.4.2 Energy aware cluster node management of biogas energy system 7.4.3 Clustering method in biogas energy system 7.4.4 Basic big data measures for biogas energy data, text retrieval 7.4.5 Application of map reduces in solar and wind energy system 7.4.5.1 Sorting 7.4.5.2 Searching 7.4.5.3 Indexing 7.4.6 Market basket model in biogas energy system 7.4.7 Market basket model based frequent item set mining for biogas energy system 7.4.8 Associate rule mining in biogas energy system 7.4.9 Framework for frequent parameter mining 7.4.10 Monotonicity and Apriori algorithm property of biogas energy parameters 7.5 Role of biogas power plant in clean development mechanism 7.5.1 Clean development mechanism’s role in technology transfer 7.5.2 Clean development mechanism and sustainable development 7.5.3 Clean development mechanism and biogas energy promotion 7.6 Exercise Further reading Index Back Cover