دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Mike Amundsen
سری:
ISBN (شابک) : 9781680506808, 9781680506815
ناشر: The Pragmatic Bookshelf, LLC
سال نشر:
تعداد صفحات: 0
زبان: English
فرمت فایل : EPUB (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Design and Build Great Web APIs به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی و ساخت APIهای وب عالی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Table of Contents Preface Who Is This Book For? What’s New in the Second Edition What’s in This Book? How to Read This Book Code Examples Online Resources Acknowledgments Connecting 1. Why Data Structures Matter Data Structures The Array: The Foundational Data Structure Measuring Speed Reading Searching Insertion Deletion Sets: How a Single Rule Can Affect Efficiency Wrapping Up Exercises 2. Why Algorithms Matter Ordered Arrays Searching an Ordered Array Binary Search Binary Search vs. Linear Search Wrapping Up Exercises 3. O Yes! Big O Notation Big O: How Many Steps Relative to N Elements? The Soul of Big O An Algorithm of the Third Kind Logarithms O(log N) Explained Practical Examples Wrapping Up Exercises 4. Speeding Up Your Code with Big O Bubble Sort Bubble Sort in Action The Efficiency of Bubble Sort A Quadratic Problem A Linear Solution Wrapping Up Exercises 5. Optimizing Code with and Without Big O Selection Sort Selection Sort in Action The Efficiency of Selection Sort Ignoring Constants Big O Categories Wrapping Up Exercises 6. Optimizing for Optimistic Scenarios Insertion Sort Insertion Sort in Action The Efficiency of Insertion Sort The Average Case A Practical Example Wrapping Up Exercises 7. Big O in Everyday Code Mean Average of Even Numbers Word Builder Array Sample Average Celsius Reading Clothing Labels Count the Ones Palindrome Checker Get All the Products Password Cracker Wrapping Up Exercises 8. Blazing Fast Lookup with Hash Tables Hash Tables Hashing with Hash Functions Building a Thesaurus for Fun and Profit, but Mainly Profit Hash Table Lookups Dealing with Collisions Making an Efficient Hash Table Hash Tables for Organization Hash Tables for Speed Wrapping Up Exercises 9. Crafting Elegant Code with Stacks and Queues Stacks Abstract Data Types Stacks in Action The Importance of Constrained Data Structures Queues Queues in Action Wrapping Up Exercises 10. Recursively Recurse with Recursion Recurse Instead of Loop The Base Case Reading Recursive Code Recursion in the Eyes of the Computer Filesystem Traversal Wrapping Up Exercises 11. Learning to Write in Recursive Recursive Category: Repeatedly Execute Recursive Category: Calculations Top-Down Recursion: A New Way of Thinking The Staircase Problem Anagram Generation Wrapping Up Exercises 12. Dynamic Programming Unnecessary Recursive Calls The Little Fix for Big O The Efficiency of Recursion Overlapping Subproblems Dynamic Programming through Memoization Dynamic Programming through Going Bottom-Up Wrapping Up Exercises 13. Recursive Algorithms for Speed Partitioning Quicksort The Efficiency of Quicksort Quicksort in the Worst-Case Scenario Quickselect Sorting as a Key to Other Algorithms Wrapping Up Exercises 14. Node-Based Data Structures Linked Lists Implementing a Linked List Reading Searching Insertion Deletion Efficiency of Linked List Operations Linked Lists in Action Doubly Linked Lists Queues as Doubly Linked Lists Wrapping Up Exercises 15. Speeding Up All the Things with Binary Search Trees Trees Binary Search Trees Searching Insertion Deletion Binary Search Trees in Action Binary Search Tree Traversal Wrapping Up Exercises 16. Keeping Your Priorities Straight with Heaps Priority Queues Heaps Heap Properties Heap Insertion Looking for the Last Node Heap Deletion Heaps vs. Ordered Arrays The Problem of the Last Node…Again Arrays as Heaps Heaps as Priority Queues Wrapping Up Exercises 17. It Doesn\'t Hurt to Trie Tries Storing Words Trie Search The Efficiency of Trie Search Trie Insertion Building Autocomplete Completing Autocomplete Tries with Values: A Better Autocomplete Wrapping Up Exercises 18. Connecting Everything with Graphs Graphs Directed Graphs Object-Oriented Graph Implementation Graph Search Depth-First Search Breadth-First Search The Efficiency of Graph Search Weighted Graphs Dijkstra’s Algorithm Wrapping Up Exercises 19. Dealing with Space Constraints Big O of Space Complexity Trade-Offs Between Time and Space The Hidden Cost of Recursion Wrapping Up Exercises 20. Techniques for Code Optimization Prerequisite: Determine Your Current Big O Start Here: The Best-Imaginable Big O Magical Lookups Recognizing Patterns Greedy Algorithms Change the Data Structure Wrapping Up Parting Thoughts Exercises A1. Exercise Solutions Chapter 1 Chapter 2 Chapter 3 Chapter 4 Chapter 5 Chapter 6 Chapter 7 Chapter 8 Chapter 9 Chapter 10 Chapter 11 Chapter 12 Chapter 13 Chapter 14 Chapter 15 Chapter 16 Chapter 17 Chapter 18 Chapter 19 Chapter 20 Index – A – – B – – C – – D – – E – – F – – G – – H – – I – – J – – K – – L – – M – – N – – O – – P – – Q – – R – – S – – T – – U – – V – – W –