دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Dipti Singh, Vanita Garg, Kusum Deep سری: Women in Engineering and Science ISBN (شابک) : 3031179285, 9783031179280 ناشر: Springer سال نشر: 2023 تعداد صفحات: 210 [211] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 7 Mb
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Design and Applications of Nature Inspired Optimization: Contribution of Women Leaders in the Field به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی و کاربردهای بهینه سازی الهام گرفته از طبیعت: مشارکت زنان رهبر در این زمینه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents Contributors Chapter 1: An Overview of Swarm Intelligence-Based Algorithms 1 Introduction 2 Characteristics of SI-Based Algorithms 3 Particle Swarm Optimization Algorithm Pseudocode of PSO Minimizing Rosenbrock Function Using PSO 4 Artificial Bee Colony Algorithm Minimizing Schwefel´s Function Using Artificial Bee Colony Algorithm 5 Comparative Analysis Using Fixed Iteration Test 6 Conclusion References Chapter 2: Particle Swarm Optimization and Its Applications in the Manufacturing Industry 1 Introduction to Optimization Local and Global Optimal Solution Nature-Inspired Algorithms 2 Particle Swarm Optimization How PSO Works Understanding PSO Parameters Binary Particle Swarm Optimization Research Developments in PSO 3 Application of PSO Manufacturing Industry 4 Conclusion References Chapter 3: Role of Machine Learning in Bioprocess Engineering: Current Perspectives and Future Directions 1 Introduction 2 Approaches of Machine Learning in Bioprocess Engineering 3 Why Machine Learning Strategies Are Needed in Bioprocess Engineering 4 Applications of Machine Learning in Bioprocess Engineering (Case Studies) Approaches of Machine Learning in Biorefinery: A Case Study Approaches of Machine Learning in Monoclonal Antibody Production: A Case Study Approaches of Machine Learning for Antibiotic Production: A Case Study Machine Learning in Protein Engineering: A Case Study 5 Current Challenges and Future Prospects 6 Conclusion Glossary References Chapter 4: Advanced Selection Operation for Differential Evolution Algorithm 1 Introduction 2 Basic Differential Evolution (DE) 3 Proposed Modification Advance Selection Strategy Proposed DERLaS and MRLDEaS 4 Experimental Settings Test Functions Performance Criteria Parameter Setting 5 Result and Discussion Result on Benchmark Problems Result on Real-Life Application Convergence Graphs 6 Conclusions References Chapter 5: Profit Optimization of Two-Unit Briquetting System Using Grey Wolf Optimization Algorithm 1 Introduction 2 Introduction 3 State Transition Diagram 4 Transition Probabilities and Mean Sojourn Periods 5 System Effectiveness Measures Mean Time to System Failure System Availability Busy Period Expected Visits by Repairmen Profit 6 Grey Wolf Optimizer 7 Graphical Results and Discussion 8 Conclusions References Chapter 6: Solving Portfolio Optimization Using Sine-Cosine Algorithm Embedded Mutation Operations 1 Introduction 2 Markowitz Model Based on Historical Stock Price Data Markowitz Mean-Variance Model Rate of Return Expected Return Variance Portfolio Formulation Statement of the Problem 3 Problem Description Problem 1 Problem 2 4 Sine-Cosine Algorithm Mutation Power Mutation Polynomial Mutation Random Mutation Gaussian Mutation Cauchy Mutation 5 Numerical Analysis of Results Obtained by the Proposed Version of SCA Problem 1 Problem 2 6 Result Analysis 7 Conclusion References Chapter 7: Detecting Group Shilling Profiles in Recommender Systems: A Hybrid Clustering and Grey Wolf Optimizer Technique 1 Introduction 2 Related Work and Motivation 3 Shilling Attacks 4 Grey Wolf Optimizer (GWO) Motivation Description and Algorithm 5 GWODS Motivation Proposed Approach 6 Experiments and Results Dataset and Experimental Setup Parameter Setting Evaluation Metrics Experiments and Results Comparison of Binary Operators Result Analysis Comparison of GWODS with State-of-the-Art Approaches 7 Conclusion and Future Work References Chapter 8: Single Image Reflection Removal Using Deep Learning 1 Introduction 2 Literature Survey Multi-image Methods Single Input Methods Traditional Approaches Learning-Based Approaches 3 Proposed Method Training Dataset Model Description (Table 8.1) Loss Function 4 Experiment and Results Training Details Experimental Set-Up Performance Evaluation Metrics Testing Dataset 5 Conclusion and Future Work References Chapter 9: Social Media Analysis: A Tool for Popularity Prediction Using Machine Learning Classifiers 1 Introduction 2 Related Works 3 Proposed Methodology Problem Identification Data Gathering Data Filtering Fetching Features Classification Using ML Classifier Comparative Study of Different Models Implementing Tools Python Jupyter Notebook Statistical NLP, Machine Learning, and Deep Learning Application of NLP 4 Result and Discussion Real-Time Applications Experimental Validation and Accuracy 5 Conclusion and Future Scope 6 Challenges and Limitations References Appendix Benchmark Problems Real-Life Applications RF1: Parameter Estimation for Frequency-Modulated (FM) Sound Waves RF2: Optimal Thermohydraulic Performance of an Artificially Roughened Air Heater RF3: Spread-Spectrum Radar Polyphase Code Design References Index