دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Malay Kumar Das. Pradipta K. Panigrahi
سری:
ISBN (شابک) : 9780367502546, 9781003049272
ناشر: CRC Press
سال نشر: 2023
تعداد صفحات: 423
[424]
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 29 Mb
در صورت تبدیل فایل کتاب Design and Analysis of Thermal Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب طراحی و تحلیل سیستم های حرارتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
The proposed book bridges the gap between the theories of thermal science and design of practical thermal systems by discussing thermodynamic design principle, mathematical and CFD tools that will enable students as well as professional engineers to quickly analyse and design practical thermal systems
Cover Half Title Title Page Copyright Page Contents Authors Chapter 1: Introduction 1.1. Definition and Importance 1.1.1. Design versus Analysis 1.1.2. Synthesis for Design 1.1.3. Selection versus Design 1.2. Thermal System Design Aspects 1.2.1. Environmental Aspects 1.2.2. Safety Issues 1.3. Reliability, Availability and Maintainability (RAM) 1.4. Background Information and Data Sources 1.5. Workable, Optimal and Nearly Optimal Designs 1.6. Stages of the Design Process 1.6.1. DFX Strategies 1.6.2. Formulation of the Design Problem 1.6.2.1. Requirements 1.6.2.2. Given Parameters 1.6.2.3. Design Variables 1.6.2.4. Constraints and Limitations 1.6.2.5. Safety, Environmental and Other Considerations 1.7. Conceptual Designs 1.7.1. Modification in the Design of Existing Systems 1.7.2. Steps in the Design Process 1.7.2.1. Physical Systems 1.7.2.2. Modeling 1.7.2.3. Simulations 1.7.2.4. Acceptable Design Evaluations 1.7.2.5. Optimal Designs 1.7.2.6. Safety Features, Automation and Control 1.7.2.7. Communicating the Design 1.7.3. Computer-Aided Designs Problems Chapter 2: Modeling and Simulation Basics 2.1. Introduction 2.2. Types of Models 2.2.1. Analog Models 2.2.2. Mathematical Models 2.2.3. Physical Models 2.2.4. Numerical Models 2.3. Mathematical Modeling 2.3.1. Transient/Steady State 2.3.1.1. Case 1: τc→∞ (Large τc) 2.3.1.2. Case 2: τc << τr 2.3.1.3. Case 3: τc >> τr 2.3.1.4. Case 4: Periodic Processes 2.3.1.5. Case 5: Transient 2.3.2. Number of Spatial Dimensions 2.3.3. Lumped Mass Approximation 2.3.4. Simplification of Boundary Conditions 2.3.5. Negligible Effects 2.3.6. Idealizations 2.3.7. Material Properties 2.4. Sample Mathematical Modeling Examples 2.4.1. Storage Tank of Solar Collector 2.4.1.1. Lumped Mass Approximation 2.4.1.2. Material Properties 2.4.1.3. Spatial Dimensions 2.4.1.4. Simplifications 2.4.1.5. Governing Equation 2.4.1.6. Dimensionless Parameters 2.4.1.7. Dimensionless Initial/Boundary Conditions 2.4.2. An Electric Heat Treatment Furnace 2.4.2.1. Initial and Boundary Conditions 2.5. Dimensional Analysis 2.5.1. Example of an Electronic Device 2.5.1.1. Non-Dimensionalization 2.6. Curve Fitting 2.6.1. Least Square Method 2.6.2. Two Independent Variable Cases 2.6.2.1. Curve-Fitting Procedure 2.7. Numerical Modeling 2.7.1. Accuracy and Validation 2.8. Importance of Simulation 2.9. Different Classes of Numerical Simulation 2.9.1. Dynamic or Steady State 2.9.2. Continuous or Discrete 2.9.3. Deterministic or Stochastic 2.10. Flow of Information 2.11. Block Representation 2.11.1. Information Flow Diagram 2.12. Initial Design 2.13. Iterative Redesign for Convergence 2.14. Sample Thermal System Design Examples 2.14.1. A Piping Network Problem 2.14.2. A Gas Turbine Problem 2.14.3. Fin Design 2.14.3.1. Multiple Fins 2.14.3.2. An Example of a Fin Problem Problems References Chapter 3: Exergy for Design 3.1. Introduction 3.1.1. Definition of Exergy 3.1.2. Environment 3.1.3. Exergy Components 3.1.3.1. Physical Exergy 3.1.3.2. Dead States 3.1.3.3. Chemical Exergy 3.2. Exergy Balance Equation 3.2.1. Closed System 3.2.1.1. Energy Balance of the Closed System 3.2.1.2. Entropy Balance of the Closed System 3.2.2. Open System 3.2.2.1. Exergy Transfers at Inlets and Outlets 3.2.3. Standard Chemical Exergy of Gases and Gas Mixtures 3.2.4. Standard Chemical Exergy of Fuels 3.3. Exergy Destruction and Exergy Loss 3.3.1. Exergy Destruction through Heat Transfer and Friction 3.3.1.1. Thermodynamic Average Temperature 3.3.1.2. Overview 3.3.2. Exergy Destruction and Exergy Loss Ratios 3.3.3. Exergetic Efficiency 3.3.3.1. How Do We Distinguish between Fuel and Product? 3.3.3.2. Compressor, Pump or Fan 3.3.3.3. Turbine or Expander 3.3.3.4. Heat Exchanger 3.3.3.5. Case 1 3.3.3.6. Case 2 3.3.3.7. Mixing Unit 3.3.3.8. Gasifier or Combustion Chamber 3.3.3.9. Boiler 3.3.3.10. Guidelines for Defining Exergetic Efficiency 3.3.3.11. Subsystem A 3.3.3.12. Subsystem B 3.4. Exergy Analysis of a Gas Turbine-Based Power Plant 3.4.1. Guidelines for Evaluating and Improving Thermodynamic Effectiveness 3.4.2. Additional Guidelines 3.5. Exergy Analysis of a Heat Exchanger 3.5.1. Area Constraint 3.5.2. Volume Constraint 3.5.3. Combined Area and Volume Constraint 3.5.4. Unbalanced Heat Exchanger 3.5.5. Counter-Flow Heat Exchanger 3.5.6. Parallel Flow Heat Exchanger 3.6. Exergy Analysis of a Refrigeration System 3.7. Exergy Storage System 3.8. Solar Air Collector 3.8.1. Heat Transfer Coefficient 3.8.2. Air Mass Flow Rate 3.8.2.1. Energy and Exergy Efficiency 3.8.2.2. Parametric Study 3.9. Ocean Thermal Energy Conversion 3.9.1. Hydrogen Production Using OTEC 3.9.1.1. Energy Analysis 3.9.1.2. Flat Plate Solar Collector 3.9.1.3. Organic Rankine Cycle 3.9.1.4. PEM Electrolyzer 3.9.1.5. Energy Efficiency 3.9.1.6. Exergy Efficiency 3.9.2. Simulation Results Problems References Chapter 4: Material Selection 4.1. Material Properties 4.2. Software 4.3. Material Attributes 4.4. Selection Strategies 4.4.1. Material Indices 4.5. Case Studies 4.5.1. Case 1: Heat Sink Material 4.5.2. Case 2: Material for Sensible Thermal Energy Storage 4.5.3. Case 3: Phase Change Material for Cold Thermal Energy Storage 4.5.3.1. Thermophysical Properties 4.5.3.2. Kinetic Properties 4.5.3.3. Chemical Properties 4.5.3.4. Economics 4.5.4. Case 4: Selection of Insulation Material 4.5.5. Case 5: Heat Transfer Fluids for Solar Power Systems 4.6. Summary Problems References Chapter 5: Heat Exchangers 5.1. Introduction 5.2. Classification of Heat Exchanger 5.3. Overall Heat Transfer Coefficient 5.4. Log Mean Temperature Difference (LMTD) 5.5. The ε–NTU Method 5.6. Variable Overall Heat Transfer Coefficient 5.7. Heat Exchanger Thermal Design 5.7.1. Rating Problem 5.7.2. Sizing Problem 5.8. Forced Convection Correlation for Single–Phase Side of a Heat Exchanger 5.9. Effect of Variable Properties 5.9.1. For Liquids 5.9.2. For Gases 5.10. Flow in Smooth Straight Non-Circular Ducts 5.11. Heat Transfer from Smooth Tube Bundles 5.12. Pressure Drop in Tube Bundles in Cross-Flow 5.13. Shell and Tube Heat Exchangers 5.14. Tube Passes 5.15. Tube Layout 5.16. Baffle Type 5.17. Tube-Side Pressure Drop 5.18. Bell–Delaware Method 5.18.1. Shell-Side Heat Transfer Coefficient 5.18.2. Shell-Side Pressure Drop 5.19. Kern Method 5.19.1. Shell-Side Heat Transfer Coefficient 5.19.2. Shell-Side Pressure Drop 5.20. Basic Design Process 5.21. Preliminary Design Estimation 5.22. Compact Heat Exchanger Design 5.22.1. Heat Transfer and Pressure Drop 5.22.2. Pressure Drop for Finned-Tube Exchangers 5.22.3. Pressure Drop for Plate-Fin Exchangers 5.23. Optimization of Heat Exchangers Problems References Chapter 6: Piping Flow 6.1. Introduction 6.2. Energy Equations 6.2.1. Minor Losses 6.2.2. Graphics Symbol Conventions 6.2.3. General Considerations 6.2.4. Resistance Analogy 6.2.5. Classification of Pumps 6.2.6. Pump Selection 6.3. Pump Performance Using Dimensional Analysis 6.3.1. Dimensional Analysis 6.3.2. Specific Speed 6.4. Pump Curve for Viscous Fluid 6.4.1. Procedure to Obtain the Correction Factor and Pump Curve for Viscous Fluid 6.5. Effective Pump Performance Curve 6.5.1. Computer Implementation 6.5.1.1. Pumps in Series 6.5.1.2. Pumps in Parallel 6.6. System Characteristics 6.7. Pump Placement 6.7.1. Cavitation 6.7.2. Net Positive Suction Head 6.7.3. Recirculation Problem 6.8. Suction-Specific Speed 6.9. Net Positive Suction Head Available 6.10. Uncertainty Effect on Pump Selection 6.11. Uncertainty Analysis Procedure 6.11.1. Piping Network Design 6.12. Piping System Design 6.12.1. Hardy Cross Method 6.12.2. Hazen–Williams Coefficient 6.12.3. Basic Idea 6.12.4. Correction Factor 6.12.5. Implementation Procedure 6.13. Generalized Hardy Cross Analysis 6.13.1. Block Diagram Problems References Chapter 7: Artificial Intelligence for Thermal Systems 7.1. Introduction 7.2. Expert System 7.2.1. Advantages of Expert Systems 7.2.2. Disadvantages of Expert Systems 7.2.3. Structure of Expert Systems 7.2.4. An Example for Feed Water Pump Selection 7.3. Artificial Neural Network (ANN) Overview 7.3.1. Structure of ANNs 7.3.2. Training of ANNs 7.4. ANNs for Heat Exchanger Analysis 7.5. ANNs for a Thermophysical Property Database 7.6. Physics Informed ANNs 7.7. ANNs for Dynamic Thermal Systems 7.8. Summary References Chapter 8: Numerical Linear Algebra 8.1. Bisection Method 8.1.1. Convergence of Bisection Method 8.2. Newton–Raphson Method 8.3. Eigenvalues and Eigenvectors 8.4. Power Iterations 8.5. Convergence 8.6. Inverse Power Iterations 8.7. Curve Fitting 8.8. Fitting of a Straight Line 8.9. Fitting of a Polynomial 8.10. Error Estimation 8.11. Solution of Algebraic Equations 8.12. Gaussian Elimination 8.12.1. Forward Elimination 8.12.2. Back Substitution 8.12.3. How to Improve the Solution 8.13. Jacobi and Gauss–Seidel Iterations 8.13.1. Vector and Matrix Norms 8.13.2. Convergence of the Jacobi Iteration 8.13.3. Gauss–Seidel Iteration 8.14. Extension to Nonlinear Systems Chapter 9: Ordinary Differential Equations 9.1. Introduction 9.2. Euler Method 9.3. Runge–Kutta Method 9.4. Higher-Order IVP 9.5. Boundary Value Problems: Shooting Method 9.6. Boundary Value Problems: Finite Difference Method Chapter 10: Numerical Differentiation and Integration 10.1. Introduction 10.2. Numerical Differentiation 10.3. Nonuniform Grid 10.4. Double Derivative 10.5. Numerical Integration: Newton–Cotes Formulas 10.5.1. Trapezoidal Rule 10.5.2. Simpson’s One-Third Rule Chapter 11: Partial Differential Equations 11.1. Introduction 11.2. Classification 11.2.1. Marching Problem 11.2.2. Equilibrium Problem 11.2.3. Eigenvalue Problem 11.3. Second-Order Linear PDE 11.3.1. Parabolic Problem 11.3.2. Hyperbolic Problem 11.3.3. Elliptic Problem 11.4. One-Dimensional Transient Diffusion 11.5. Numerical Schemes 11.5.1. Explicit Scheme 11.5.2. Implicit Scheme 11.5.3. Crank–Nicolson Scheme 11.6. Stability and Consistency 11.6.1. Round-Off Error 11.6.2. Truncation Error 11.6.3. Consistency 11.6.4. Stability 11.7. Two-Dimensional Transient Diffusion 11.7.1. Explicit Scheme 11.7.2. Implicit and Crank–Nicolson Schemes 11.8. Elliptic Equations 11.8.1. Discretization 11.8.2. Solution Procedure 11.8.3. Pseudo-Transient Approach Chapter 12: Computational Fluid Dynamics 12.1. Introduction 12.1.1. Non-Dimensionalization 12.2. Stream Function, Vorticity (ψ – ω) Formulation 12.2.1. Stream Function 12.2.2. Vorticity 12.2.3. Vorticity Transport Equation 12.2.4. Solution Strategy 12.3. Primitive Variable Formulation Chapter 13: Electrochemical Systems 13.1. Introduction 13.1.1. Fuel Cells 13.1.2. Batteries and Fuel Cells 13.2. Fuel Cell Thermodynamics 13.2.1. Reversible Voltage 13.2.2. Reversible Efficiency 13.3. Classifications 13.3.1. PEMFC 13.3.2. SOFC 13.4. Losses in Fuel Cells References Chapter 14: Inverse Problems 14.1. Introduction 14.2. Inverse Heat Conduction: Conjugate-Gradient Approach 14.2.1. Sensitivity Problem 14.2.2. Adjoint Problem 14.2.3. Descent Direction and Step Size 14.3. Regularization and Stopping Criterion 14.3.1. Discrepancy Principle 14.3.2. Additional Measurement Approach 14.3.3. Smoothing of Experimental Data 14.4. Complete Algorithm References Appendix A: Thermophysical Properties (Working Fluids) Appendix B: Thermophysical Properties (Exergy Calculation) Appendix C: Thermophysical Properties (Emissivity) Appendix D: Standard Pipe Dimension Appendix E: Pump Performance Curve Appendix F: Minor Loss Coefficient Appendix G: Sample Project Topics Index