ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Deployable Multimodal Machine Intelligence. Applications in Biomedical Engineering

دانلود کتاب هوش ماشین چندوجهی قابل استقرار کاربردها در مهندسی پزشکی

Deployable Multimodal Machine Intelligence. Applications in Biomedical Engineering

مشخصات کتاب

Deployable Multimodal Machine Intelligence. Applications in Biomedical Engineering

ویرایش:  
نویسندگان:   
سری: Lecture Notes in Bioengineering 
ISBN (شابک) : 9789811959318, 9789811959325 
ناشر: Springer 
سال نشر: 2023 
تعداد صفحات: 589 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 23 مگابایت 

قیمت کتاب (تومان) : 32,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 9


در صورت تبدیل فایل کتاب Deployable Multimodal Machine Intelligence. Applications in Biomedical Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب هوش ماشین چندوجهی قابل استقرار کاربردها در مهندسی پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی درمورد کتاب به خارجی



فهرست مطالب

Contents
1 Preface and A Brief Guide to the Chapters
	1.1 Steer DMs with Various Actuation Modalities
	1.2 Tethered and Insertable DM/DS
	1.3 Inflatable DMs: From Tethered to Untethered
	1.4 Swallowable Magnetic DMs for Untethered Motions
		1.4.1 Permanent Magnet Actuation for External Field Generation
		1.4.2 Electromagnetic Actuation for External Field Generation
		1.4.3 Untethered Magnetoelastomer
	1.5 Wearable DMs
	1.6 Deployable Sensing Mechanisms
	1.7 Intelligent DMs with Multimodal Sensing
	1.8 Future Perspectives
2 Orimimetic Folds into Deployable Mechanisms with Potential Functionalities in Biomedical Robotics
	2.1 Introduction
	2.2 Orimimetic Design and Its Role in Keyhole Procedures
		2.2.1 Origami for Rapid Design
		2.2.2 Action Origami and Its Role in Keyhole Procedures
	2.3 Origami-Inspired Technologies
		2.3.1 Miura-Ori-Inspired Designs
		2.3.2 Curved-Crease Origami
		2.3.3 Waterbomb-Inspired Designs
		2.3.4 Modified Mountain/Valley-Fold Origami
	2.4 Other Miscellaneous Origami Methods
		2.4.1 Variably Patterned Graphene Structures
		2.4.2 Variably Patterned Cell-Based Designs
	2.5 Other Graspers
		2.5.1 Two-Jaw Surgical Graspers
		2.5.2 Issues with the Traditional Two-Jaw Graspers
	2.6 Fortune-Teller-Inspired Grasper Designs
		2.6.1 Modified Fortune Teller Design
		2.6.2 Actuation Methods
		2.6.3 Grasping Capability of Three Actuation Methods
		2.6.4 Range of Motion and Grasp Coverage
		2.6.5 Degrees of Freedom
		2.6.6 Assembly from a Flat Surface and Flat Foldability
	2.7 Remarks
	References
Part I Tethered Insertable DMs
3 Deployable and Interchangeable Telescoping Tubes
	3.1 Introduction
	3.2 Related Work
		3.2.1 Deployable and Collapsible Designs
		3.2.2 Actuations for Folding Structures
		3.2.3 Bistable and Locking Methods
	3.3 Methods and Design
		3.3.1 Bistable FITT Structure
		3.3.2 SCAT with a Tongue Depressor and Tendon-Driven Swab
		3.3.3 Tendon-Driven Mechanism (TDM)
		3.3.4 Modularity of Design: Interchangeable Tips
	3.4 Simulation
	3.5 Force Analysis Experiments
		3.5.1 Bistability
		3.5.2 TDM Structure
	3.6 Discussion
	3.7 Conclusion and Future Work
	References
4 Deployable Parallelogram Mechanism for Generating Remote Centre of Motion Towards Ocular Procedures
	4.1 Introduction
	4.2 Ophthalmic Surgery
	4.3 Remote Centre of Motion
	4.4 Comparison with Existing RCM Robot Mechanism
	4.5 Kinematic Design Considerations
		4.5.1 Design Goals (DG)
		4.5.2 Design Preference (DP)
	4.6 Proposed Design
	4.7 Electrical Schematic Diagram
	4.8 Experimentation Results and Observations
	4.9 Weight of Main RCM
	4.10 Belt and Pulley Backlash
	4.11 Parts Assembly
	4.12 Conclusion
	4.13 Future Improvements
	References
Part II Inflatable DMs: From Tethered to Untethered
5 Conceptual Origami Bending and Bistability for Transoral Mechanisms
	5.1 Background
	5.2 Prioritize the Needs
	5.3 Design and Actuation
		5.3.1 Overall Origami Deployable Structures
		5.3.2 Origami Actuation Components & Bistability Rationale
	5.4 Design Verifications
		5.4.1 Material Tests
		5.4.2 Usability Tests
		5.4.3 Summary of the Overall System
	5.5 Discussion
		5.5.1 Needs-Metrics Table
		5.5.2 Failure Mode Analysis
		5.5.3 Risk Assessment Matrix
	5.6 Conclusion
	References
6 Tactile Sensitive Origami Trihexaflexagon Gripper Actuated by Foldable Pneumatic Bellows
	6.1 Introduction
	6.2 Design and Construction
		6.2.1 Gripper Body
		6.2.2 Actuation Mechanism and Construction Protocol
		6.2.3 Working Principle of FlexagonBot
	6.3 Sensor Working Principle and Calibration
		6.3.1 Sensor Design
		6.3.2 Sensor Working Principle
		6.3.3 Sensor Calibration
	6.4 Flexagonbot Payload Test
	6.5 Payload Test Results and Discussion
	6.6 Conclusions and Future Works
	References
7 Biomimetic Untethered Inflatable Origami
	7.1 Introduction
	7.2 Related Work
	7.3 Materials and Methods
		7.3.1 Prototype Design and Specifications
		7.3.2 Origami Exoskeleton Design
		7.3.3 Valve and Arduino Setup
		7.3.4 Reactant Compartment Design
		7.3.5 Mechanism of SM
		7.3.6 Paddle Fin Design
		7.3.7 Proposed Tests
	7.4 Results
		7.4.1 Design Input 1—Inflation
		7.4.2 Design Input 2—Heaving Motion
		7.4.3 Design Input 3—Surge Motion
		7.4.4 Design Input 4—Yaw Motion
	7.5 Discussions
		7.5.1 Feature 1: Inflation
		7.5.2 Feature 2: Heave Motion
		7.5.3 Features 3 and 4: Surge and Yaw Motion
		7.5.4 Other Features
		7.5.5 Future Applications
	7.6 Conclusion
	Appendix 1
	Appendix 2
		Full Arduino Code
	Appendix 3
	References
Part III Swallowable Magnetic DMs for Untethered Motions
8 Wormigami and Tippysaurus: Magnetically Actuated Origami Structures
	8.1 Introduction
	8.2 Wormigami Structure
		8.2.1 IPM Magnet Placement
	8.3 Wormigami Motion Capabilities
		8.3.1 Caterpillar-Wave Motion
		8.3.2 Rolling
		8.3.3 Peristaltic
		8.3.4 Downward Dog
		8.3.5 Slinky
		8.3.6 Hyperextension: “Head Lifting”
		8.3.7 Inchworm Motion
		8.3.8 Comparison of Movements of the Model
	8.4 Tippysaurus Structure
	8.5 Tippysaurus Motion Capability
	8.6 Material Testing
	8.7 Wormigami: Compression and Tensile Tests
		8.7.1 Compression Test for Paper with Mod-Podge Without IPM
		8.7.2 Compression Test for Paper with Mod-Podge Coating and IPM
		8.7.3 Compression Ratio for the Plastic Model Without IPM
		8.7.4 Tensile Test for Paper Model with Mod-Podge Without IPM
		8.7.5 Tensile Test for Paper with Mod-Podge with IPM
		8.7.6 Tensile Test for Plastic Without IPM
	8.8 Tippysaurus: Compression and Tensile Tests
		8.8.1 Compression Test for Paper with Mod-Podge Without IPM
		8.8.2 Compression for Plastic Without IPM
		8.8.3 Compression for Paper with Mod-Podge with IPM
		8.8.4 Tensile Test for Paper with Mod-Podge Without IPM
		8.8.5 Tensile Test for Plastic Without IPM
		8.8.6 Tensile Test for Paper with Mod-Podge with IPM
	8.9 Force Assessment
		8.9.1 Contact Force on the Surface
		8.9.2 Vertical Force Assessment
		8.9.3 Overall Force Output
		8.9.4 Unsupervised Contact Between External Magnet and Human Body
		8.9.5 EPM Contact Monitoring
	8.10 Conclusion and Remarks
	References
9 Untethered Motion Generation and Characterization of Multi-Leg Insect-Size Soft Foldable Robots Under Magnetic Actuation
	9.1 Introduction
	9.2 Literature Review
	9.3 Methodology
	9.4 Results and Discussion
		9.4.1 Wave Motion-Induced Along the Horizontal Plane
		9.4.2 Compression of the Prototype
		9.4.3 Lateral Extension with Respect to the Frontal Plane of the Prototype
		9.4.4 Motion Along a Stable Board Surface
		9.4.5 Motion Along an Irregular Surface
		9.4.6 Flipping Over and Recovery of the Prototype
		9.4.7 Future Directions of Study
	9.5 Conclusions
	References
10 Magnetically Actuated Luminal Origami
	10.1 Introduction
	10.2 Design of MALO
		10.2.1 Robotic Origami Backbone
		10.2.2 Magnetic Patterning and External Magnetic Field Generation
		10.2.3 Motions Generated
	10.3 Mechanical Tests
		10.3.1 Tensile Test
		10.3.2 Compression Test
		10.3.3 Three-Point Flexural Test
		10.3.4 Dynamic Force Analysis
	10.4 Displacement and Speed Tracking
		10.4.1 Omega
		10.4.2 Peristaltic
		10.4.3 Inchworm
	10.5 Internal Deformation
		10.5.1 Omega
		10.5.2 Inchworm
		10.5.3 Peristaltic
	10.6 Surface and Environment Test
		10.6.1 Waterproof Test
		10.6.2 Surface Test (Gravel)
		10.6.3 Surface Test (Gel)
		10.6.4 Need-Metrics Matrix
		10.6.5 Risk Assessment
	10.7 Discussion on Potential Applications
	References
11 Compressable and Steerable Slinky Motions
	11.1 Introduction
	11.2 Design Rationale
		11.2.1 Design Progress & Overall Design
		11.2.2 Square Slinkey
		11.2.3 Deciding the Number of Folds
		11.2.4 Materials Used
	11.3 Motion Analysis
		11.3.1 Inchworm Motion
		11.3.2 Peristaltic
		11.3.3 Rolling Motion
		11.3.4 Head Rotation
		11.3.5 Leaping Motion
		11.3.6 Slinky Motion
		11.3.7 Summary of Motion Capabilities
		11.3.8 Reconfigurability Advantages
		11.3.9 Mechanical Testing
	11.4 Improvements and Potential Applications
		11.4.1 Possible Improvements
		11.4.2 Possible Uses
		11.4.3 Other Design Possibilities
		11.4.4 Computer-Aided Design (CAD)
	11.5 Safety, Risk & Ethics Issues
		11.5.1 Robot Overview
		11.5.2 Risk Identification
		11.5.3 Risk Management
	11.6 Patent Review & Comparisons
		11.6.1 Patent Search & Approach
		11.6.2 Related Patents
		11.6.3 The Design Novelty
		11.6.4 Motion Comparison
		11.6.5 Tabulated Needs and Metrics
		11.6.6 Metric Comparison
	11.7 Remarks
	References
12 Magnetically Actuated Origami Structures for Untethered Optical Steering in Remote Set-up: Preliminary Designs and Characterisations
	12.1 Introduction
	12.2 Background
	12.3 Design Considerations and Materials
		12.3.1 Fabrication
		12.3.2 Magnetic Actuation Characterisation
		12.3.3 Optic Steering System Setup
	12.4 Origami Designs
		12.4.1 Starshade Origami Pattern and Structure
		12.4.2 Nejiri-Ori Origami Pattern and Structure
		12.4.3 Oricep Origami Pattern and Structure
		12.4.4 Sarrus Origami Pattern and Structure
		12.4.5 Twisted Tower Origami Pattern and Structure
	12.5 Steering Methods
		12.5.1 Magnetic Actuation of Origami Structures
		12.5.2 Remote Magnetic Actuation of Nejiri-Ori Structure with PM and EM
		12.5.3 Displacement Characterisation
	12.6 Characterisation Results
		12.6.1 Force Characterisation of Starshade Using the Force Sensor
		12.6.2 Load Bearing Capability and Stiffness of Starshade Design
		12.6.3 Starshade Reversibility Characterisation
		12.6.4 Nejiri-Ori Reversibility Characterisation
	12.7 Optical Component Steering
		12.7.1 Direct Steering of Light Projection
		12.7.2 Setups Indirect Beam Steering with Optical Reflective Surface
		12.7.3 Indirect Steering (with Permanent Magnet) of Laser Beam Pathway
		12.7.4 Indirect Steering with Electromagnet Nejiri-Ori Structure
		12.7.5 Steering Other Origami Designs
	12.8 Discussion
		12.8.1 Manual and Magnetic Actuation
		12.8.2 Electromagnet and Permanent Magnet
		12.8.3 Optical Beam Steering Demo
	12.9 Conclusion and Remarks
	Appendices: Background Survey on Optical Component Steering Devices
	References
13 Untethered Soft Ferromagnetic Quad-Jaws Cootie Catcher with Selectively Coupled Degrees of Freedom
	13.1 Introduction
	13.2 Methods and Materials
		13.2.1 Model Inspiration
		13.2.2 Materials Used
		13.2.3 Model Design
		13.2.4 Fabrication Method
		13.2.5 Model Mechanism of Action
	13.3 Methods and Results
		13.3.1 FEA Simulations of Walking and Grasping Motion
		13.3.2 Measuring Jaw Motion with Changing Magnetic Field
		13.3.3 Measuring Grip Force Generated with Changing Magnetic Field
		13.3.4 Walking Motion Analysis
		13.3.5 Proof-Of-Concept Demonstration of the Anastomosis
	13.4 Discussions
		13.4.1 Advantages with the Untethered and Coupled DOFs
		13.4.2 Limitations of Prototype
		13.4.3 Other Envisioned Applications of the Proposed Model
	13.5 Conclusion
	References
Part IV Wearable DMs
14 Wearable Origami Rendering Mechanism Towards Haptic Illusion
	14.1 Introduction
	14.2 Related Work
		14.2.1 Haptics in Virtual Reality
		14.2.2 Pressure-Aided Transdermal Drug Delivery
		14.2.3 Haptic Feedback and Materials
		14.2.4 Concept of Magnetically Actuated WORM
	14.3 Methodology
		14.3.1 WORM Structure
		14.3.2 Magnetic Actuation
		14.3.3 Innovations
		14.3.4 Movement
	14.4 Results
		14.4.1 Dynamic Force Analysis
		14.4.2 Rotational Axis of the EM
		14.4.3 Orientation of IMs
		14.4.4 Location of EM
		14.4.5 Location of Internal Magnets (IMs)
		14.4.6 Vibration of WORM
	14.5 Discussion
		14.5.1 Significance of Results
		14.5.2 Limitations
		14.5.3 Future Improvements
		14.5.4 Future Potential Applications
	14.6 Conclusion
	References
15 Deployable Compression Generating and Sensing for Wearable Compression-Aware Force Rendering
	15.1 Introduction
	15.2 Background
		15.2.1 Anatomy of the Skin
		15.2.2 Penetration Pathways for Drug Absorption
		15.2.3 Transdermal Drug Delivery Technology
		15.2.4 Wearable Haptic Systems
		15.2.5 Origami Mechanism
		15.2.6 Sensing Mechanism
	15.3 Design Methodology
		15.3.1 Origami Structural Design
		15.3.2 Pressure Sensor Design
		15.3.3 System Fabrication
		15.3.4 Working Principle
	15.4 Experiments
		15.4.1 Pneumatic Origami Structure Motion Generation
		15.4.2 Mechanical Test for Microfiber Sensor
		15.4.3 Onboard Data Acquisition
		15.4.4 Evaluation
	15.5 Discussion
		15.5.1 Improvements
		15.5.2 Future Potential Applications
	15.6 Conclusion
	References
Part V Deployable Sensing Mechanisms
16 Kinesthesia Sensorization of Foldable Designs Using Soft Sensors
	16.1 Introduction
	16.2 Methods
	16.3 Fabrication of the Soft Hydrogel Silver Nanowire Sensor
	16.4 Results and Discussion
	16.5 Conclusions
	References
17 Flat Foldable Kirigami for Chipless Wireless Sensing
	17.1 Introduction
	17.2 Theory
	17.3 Materials and Methods
	17.4 Tag Antenna Characterization
	17.5 Wireless Sensors
	17.6 Discussion
	17.7 Conclusion
	Appendix 17.1: Literature Review
	Appendix 17.2: Sample of .s1p File with Interpretation
	Appendix 17.3: VNA Calibration Procedure
	References
18 Deployable Kirigami for Intra-Abdominal Monitoring
	18.1 Introduction
		18.1.1 Needs and Significance
		18.1.2 Current Routes of Measuring IAP
		18.1.3 Patent Space
		18.1.4 Related Sensing Technologies
	18.2 Methods
		18.2.1 Test Kirigami Geometry
		18.2.2 Parameter Characterization to Optimize the Selected Geometry
	18.3 Results
		18.3.1 RRC Test to Find Out the Geometry with the Best RRC
		18.3.2 Parameter Characterization to Optimize the Selected Geometry
	18.4 Discussion
	18.5 Conclusion
	References
19 Stretchable Strain Sensors by Kirigami Deployable on Balloons with Temporary Tattoo Paper
	19.1 Introduction
	19.2 Related Work
		19.2.1 Electronic Catheter Balloons
		19.2.2 Kirigami Technique in Flexible Electronics
		19.2.3 Intrinsically Flexible Conductive Materials
	19.3 Materials and Methods
		19.3.1 Phase I (Kirigami Design Cuts)
		19.3.2 Analyze Kirigami Design Cuts of Phase I
		19.3.3 Phase II (Adhere Gold Substrate to Balloon)
		19.3.4 Finalize Construction Method
		19.3.5 Analyze Both Fabrication Methods
	19.4 Results and Discussion
		19.4.1 Measurement of Normalized Resistance (ΔRR0) Against x-longitudinal Strain and y-axial Strain
		19.4.2 Measurement of Pressure Against Volume
		19.4.3 Setup Measurement of Air Volume Against Balloon Radius
		19.4.4 Setup to Measure Resistance Against Volume
		19.4.5 Normalized Resistance (ΔRR0) Against Radius Strain of the Balloon
		19.4.6 Normalized Resistance (ΔRR0) Against Pressure
		19.4.7 Normalized Resistance (ΔRR0) Against Volume
	19.5 Conclusion and Future Work
	References
Part VI Intelligent DMs with Multimodal Sensing
20 Multi-DOF Proprioceptive Origami Structures with Fiducial Markers
	20.1 Introduction
	20.2 Fiducial Tags in ML Estimations Using ArUco Markers
	20.3 Crease Patterns
		20.3.1 Pattern 1—3L1J (3 Legs 1 Joint)
		20.3.2 Pattern 2—3L2Ja (3 Legs 2 Joints (a))
		20.3.3 Pattern 3—3L2Jb (3 Legs 2 Joints (b))
		20.3.4 Pattern 4—4L2J (4 Legs 2 Joints)
	20.4 Calibrations
		20.4.1 Triaxial Stiffness
		20.4.2 Motion Estimation
		20.4.3 Triaxial Load Sensitivity
		20.4.4 Validation Using ATI-Nano
	20.5 Results and Analysis
		20.5.1 Motion Estimation
		20.5.2 Force Sensitivity
		20.5.3 Validation with ATI-Nano
		20.5.4 Noise
		20.5.5 Overview of Results
	20.6 Discussion
	20.7 Conclusion
	Appendix 1: Python Codes
	Appendix 2: Motion Estimation
	Appendix 3: Force Sensitivity Graphs
	Appendix 4: ML Sensor-ATI Overlapped Graphs
	Appendix 5: Noise Graphs
	References
21 Unsupervised Intelligent Pose Estimation of Origami-Inspired Deployable Robots
	21.1 Introduction
		21.1.1 Various Origami Motions
		21.1.2 2D Feature Tracking
	21.2 Visual Feature-Based Planar Motion Tracking
		21.2.1 Vision-Based Trackers
		21.2.2 Track Inchworm, Omega and Tumbling Motions
		21.2.3 Future Alternative Spatial 6-DOF Tracking Using Aruco Markers
	21.3 Sim2Real 6-DOF Pose Estimation Using Synthetic Data
		21.3.1 Image Generation for Deep Learning-Based 3D Tracking
		21.3.2 Domain Randomization
		21.3.3 CDAE Network Architecture
	21.4 Remarks and Alternative Approaches
	References




نظرات کاربران