دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Hongliang Ren
سری: Lecture Notes in Bioengineering
ISBN (شابک) : 9789811959318, 9789811959325
ناشر: Springer
سال نشر: 2023
تعداد صفحات: 589
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 23 مگابایت
در صورت تبدیل فایل کتاب Deployable Multimodal Machine Intelligence. Applications in Biomedical Engineering به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب هوش ماشین چندوجهی قابل استقرار کاربردها در مهندسی پزشکی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Contents 1 Preface and A Brief Guide to the Chapters 1.1 Steer DMs with Various Actuation Modalities 1.2 Tethered and Insertable DM/DS 1.3 Inflatable DMs: From Tethered to Untethered 1.4 Swallowable Magnetic DMs for Untethered Motions 1.4.1 Permanent Magnet Actuation for External Field Generation 1.4.2 Electromagnetic Actuation for External Field Generation 1.4.3 Untethered Magnetoelastomer 1.5 Wearable DMs 1.6 Deployable Sensing Mechanisms 1.7 Intelligent DMs with Multimodal Sensing 1.8 Future Perspectives 2 Orimimetic Folds into Deployable Mechanisms with Potential Functionalities in Biomedical Robotics 2.1 Introduction 2.2 Orimimetic Design and Its Role in Keyhole Procedures 2.2.1 Origami for Rapid Design 2.2.2 Action Origami and Its Role in Keyhole Procedures 2.3 Origami-Inspired Technologies 2.3.1 Miura-Ori-Inspired Designs 2.3.2 Curved-Crease Origami 2.3.3 Waterbomb-Inspired Designs 2.3.4 Modified Mountain/Valley-Fold Origami 2.4 Other Miscellaneous Origami Methods 2.4.1 Variably Patterned Graphene Structures 2.4.2 Variably Patterned Cell-Based Designs 2.5 Other Graspers 2.5.1 Two-Jaw Surgical Graspers 2.5.2 Issues with the Traditional Two-Jaw Graspers 2.6 Fortune-Teller-Inspired Grasper Designs 2.6.1 Modified Fortune Teller Design 2.6.2 Actuation Methods 2.6.3 Grasping Capability of Three Actuation Methods 2.6.4 Range of Motion and Grasp Coverage 2.6.5 Degrees of Freedom 2.6.6 Assembly from a Flat Surface and Flat Foldability 2.7 Remarks References Part I Tethered Insertable DMs 3 Deployable and Interchangeable Telescoping Tubes 3.1 Introduction 3.2 Related Work 3.2.1 Deployable and Collapsible Designs 3.2.2 Actuations for Folding Structures 3.2.3 Bistable and Locking Methods 3.3 Methods and Design 3.3.1 Bistable FITT Structure 3.3.2 SCAT with a Tongue Depressor and Tendon-Driven Swab 3.3.3 Tendon-Driven Mechanism (TDM) 3.3.4 Modularity of Design: Interchangeable Tips 3.4 Simulation 3.5 Force Analysis Experiments 3.5.1 Bistability 3.5.2 TDM Structure 3.6 Discussion 3.7 Conclusion and Future Work References 4 Deployable Parallelogram Mechanism for Generating Remote Centre of Motion Towards Ocular Procedures 4.1 Introduction 4.2 Ophthalmic Surgery 4.3 Remote Centre of Motion 4.4 Comparison with Existing RCM Robot Mechanism 4.5 Kinematic Design Considerations 4.5.1 Design Goals (DG) 4.5.2 Design Preference (DP) 4.6 Proposed Design 4.7 Electrical Schematic Diagram 4.8 Experimentation Results and Observations 4.9 Weight of Main RCM 4.10 Belt and Pulley Backlash 4.11 Parts Assembly 4.12 Conclusion 4.13 Future Improvements References Part II Inflatable DMs: From Tethered to Untethered 5 Conceptual Origami Bending and Bistability for Transoral Mechanisms 5.1 Background 5.2 Prioritize the Needs 5.3 Design and Actuation 5.3.1 Overall Origami Deployable Structures 5.3.2 Origami Actuation Components & Bistability Rationale 5.4 Design Verifications 5.4.1 Material Tests 5.4.2 Usability Tests 5.4.3 Summary of the Overall System 5.5 Discussion 5.5.1 Needs-Metrics Table 5.5.2 Failure Mode Analysis 5.5.3 Risk Assessment Matrix 5.6 Conclusion References 6 Tactile Sensitive Origami Trihexaflexagon Gripper Actuated by Foldable Pneumatic Bellows 6.1 Introduction 6.2 Design and Construction 6.2.1 Gripper Body 6.2.2 Actuation Mechanism and Construction Protocol 6.2.3 Working Principle of FlexagonBot 6.3 Sensor Working Principle and Calibration 6.3.1 Sensor Design 6.3.2 Sensor Working Principle 6.3.3 Sensor Calibration 6.4 Flexagonbot Payload Test 6.5 Payload Test Results and Discussion 6.6 Conclusions and Future Works References 7 Biomimetic Untethered Inflatable Origami 7.1 Introduction 7.2 Related Work 7.3 Materials and Methods 7.3.1 Prototype Design and Specifications 7.3.2 Origami Exoskeleton Design 7.3.3 Valve and Arduino Setup 7.3.4 Reactant Compartment Design 7.3.5 Mechanism of SM 7.3.6 Paddle Fin Design 7.3.7 Proposed Tests 7.4 Results 7.4.1 Design Input 1—Inflation 7.4.2 Design Input 2—Heaving Motion 7.4.3 Design Input 3—Surge Motion 7.4.4 Design Input 4—Yaw Motion 7.5 Discussions 7.5.1 Feature 1: Inflation 7.5.2 Feature 2: Heave Motion 7.5.3 Features 3 and 4: Surge and Yaw Motion 7.5.4 Other Features 7.5.5 Future Applications 7.6 Conclusion Appendix 1 Appendix 2 Full Arduino Code Appendix 3 References Part III Swallowable Magnetic DMs for Untethered Motions 8 Wormigami and Tippysaurus: Magnetically Actuated Origami Structures 8.1 Introduction 8.2 Wormigami Structure 8.2.1 IPM Magnet Placement 8.3 Wormigami Motion Capabilities 8.3.1 Caterpillar-Wave Motion 8.3.2 Rolling 8.3.3 Peristaltic 8.3.4 Downward Dog 8.3.5 Slinky 8.3.6 Hyperextension: “Head Lifting” 8.3.7 Inchworm Motion 8.3.8 Comparison of Movements of the Model 8.4 Tippysaurus Structure 8.5 Tippysaurus Motion Capability 8.6 Material Testing 8.7 Wormigami: Compression and Tensile Tests 8.7.1 Compression Test for Paper with Mod-Podge Without IPM 8.7.2 Compression Test for Paper with Mod-Podge Coating and IPM 8.7.3 Compression Ratio for the Plastic Model Without IPM 8.7.4 Tensile Test for Paper Model with Mod-Podge Without IPM 8.7.5 Tensile Test for Paper with Mod-Podge with IPM 8.7.6 Tensile Test for Plastic Without IPM 8.8 Tippysaurus: Compression and Tensile Tests 8.8.1 Compression Test for Paper with Mod-Podge Without IPM 8.8.2 Compression for Plastic Without IPM 8.8.3 Compression for Paper with Mod-Podge with IPM 8.8.4 Tensile Test for Paper with Mod-Podge Without IPM 8.8.5 Tensile Test for Plastic Without IPM 8.8.6 Tensile Test for Paper with Mod-Podge with IPM 8.9 Force Assessment 8.9.1 Contact Force on the Surface 8.9.2 Vertical Force Assessment 8.9.3 Overall Force Output 8.9.4 Unsupervised Contact Between External Magnet and Human Body 8.9.5 EPM Contact Monitoring 8.10 Conclusion and Remarks References 9 Untethered Motion Generation and Characterization of Multi-Leg Insect-Size Soft Foldable Robots Under Magnetic Actuation 9.1 Introduction 9.2 Literature Review 9.3 Methodology 9.4 Results and Discussion 9.4.1 Wave Motion-Induced Along the Horizontal Plane 9.4.2 Compression of the Prototype 9.4.3 Lateral Extension with Respect to the Frontal Plane of the Prototype 9.4.4 Motion Along a Stable Board Surface 9.4.5 Motion Along an Irregular Surface 9.4.6 Flipping Over and Recovery of the Prototype 9.4.7 Future Directions of Study 9.5 Conclusions References 10 Magnetically Actuated Luminal Origami 10.1 Introduction 10.2 Design of MALO 10.2.1 Robotic Origami Backbone 10.2.2 Magnetic Patterning and External Magnetic Field Generation 10.2.3 Motions Generated 10.3 Mechanical Tests 10.3.1 Tensile Test 10.3.2 Compression Test 10.3.3 Three-Point Flexural Test 10.3.4 Dynamic Force Analysis 10.4 Displacement and Speed Tracking 10.4.1 Omega 10.4.2 Peristaltic 10.4.3 Inchworm 10.5 Internal Deformation 10.5.1 Omega 10.5.2 Inchworm 10.5.3 Peristaltic 10.6 Surface and Environment Test 10.6.1 Waterproof Test 10.6.2 Surface Test (Gravel) 10.6.3 Surface Test (Gel) 10.6.4 Need-Metrics Matrix 10.6.5 Risk Assessment 10.7 Discussion on Potential Applications References 11 Compressable and Steerable Slinky Motions 11.1 Introduction 11.2 Design Rationale 11.2.1 Design Progress & Overall Design 11.2.2 Square Slinkey 11.2.3 Deciding the Number of Folds 11.2.4 Materials Used 11.3 Motion Analysis 11.3.1 Inchworm Motion 11.3.2 Peristaltic 11.3.3 Rolling Motion 11.3.4 Head Rotation 11.3.5 Leaping Motion 11.3.6 Slinky Motion 11.3.7 Summary of Motion Capabilities 11.3.8 Reconfigurability Advantages 11.3.9 Mechanical Testing 11.4 Improvements and Potential Applications 11.4.1 Possible Improvements 11.4.2 Possible Uses 11.4.3 Other Design Possibilities 11.4.4 Computer-Aided Design (CAD) 11.5 Safety, Risk & Ethics Issues 11.5.1 Robot Overview 11.5.2 Risk Identification 11.5.3 Risk Management 11.6 Patent Review & Comparisons 11.6.1 Patent Search & Approach 11.6.2 Related Patents 11.6.3 The Design Novelty 11.6.4 Motion Comparison 11.6.5 Tabulated Needs and Metrics 11.6.6 Metric Comparison 11.7 Remarks References 12 Magnetically Actuated Origami Structures for Untethered Optical Steering in Remote Set-up: Preliminary Designs and Characterisations 12.1 Introduction 12.2 Background 12.3 Design Considerations and Materials 12.3.1 Fabrication 12.3.2 Magnetic Actuation Characterisation 12.3.3 Optic Steering System Setup 12.4 Origami Designs 12.4.1 Starshade Origami Pattern and Structure 12.4.2 Nejiri-Ori Origami Pattern and Structure 12.4.3 Oricep Origami Pattern and Structure 12.4.4 Sarrus Origami Pattern and Structure 12.4.5 Twisted Tower Origami Pattern and Structure 12.5 Steering Methods 12.5.1 Magnetic Actuation of Origami Structures 12.5.2 Remote Magnetic Actuation of Nejiri-Ori Structure with PM and EM 12.5.3 Displacement Characterisation 12.6 Characterisation Results 12.6.1 Force Characterisation of Starshade Using the Force Sensor 12.6.2 Load Bearing Capability and Stiffness of Starshade Design 12.6.3 Starshade Reversibility Characterisation 12.6.4 Nejiri-Ori Reversibility Characterisation 12.7 Optical Component Steering 12.7.1 Direct Steering of Light Projection 12.7.2 Setups Indirect Beam Steering with Optical Reflective Surface 12.7.3 Indirect Steering (with Permanent Magnet) of Laser Beam Pathway 12.7.4 Indirect Steering with Electromagnet Nejiri-Ori Structure 12.7.5 Steering Other Origami Designs 12.8 Discussion 12.8.1 Manual and Magnetic Actuation 12.8.2 Electromagnet and Permanent Magnet 12.8.3 Optical Beam Steering Demo 12.9 Conclusion and Remarks Appendices: Background Survey on Optical Component Steering Devices References 13 Untethered Soft Ferromagnetic Quad-Jaws Cootie Catcher with Selectively Coupled Degrees of Freedom 13.1 Introduction 13.2 Methods and Materials 13.2.1 Model Inspiration 13.2.2 Materials Used 13.2.3 Model Design 13.2.4 Fabrication Method 13.2.5 Model Mechanism of Action 13.3 Methods and Results 13.3.1 FEA Simulations of Walking and Grasping Motion 13.3.2 Measuring Jaw Motion with Changing Magnetic Field 13.3.3 Measuring Grip Force Generated with Changing Magnetic Field 13.3.4 Walking Motion Analysis 13.3.5 Proof-Of-Concept Demonstration of the Anastomosis 13.4 Discussions 13.4.1 Advantages with the Untethered and Coupled DOFs 13.4.2 Limitations of Prototype 13.4.3 Other Envisioned Applications of the Proposed Model 13.5 Conclusion References Part IV Wearable DMs 14 Wearable Origami Rendering Mechanism Towards Haptic Illusion 14.1 Introduction 14.2 Related Work 14.2.1 Haptics in Virtual Reality 14.2.2 Pressure-Aided Transdermal Drug Delivery 14.2.3 Haptic Feedback and Materials 14.2.4 Concept of Magnetically Actuated WORM 14.3 Methodology 14.3.1 WORM Structure 14.3.2 Magnetic Actuation 14.3.3 Innovations 14.3.4 Movement 14.4 Results 14.4.1 Dynamic Force Analysis 14.4.2 Rotational Axis of the EM 14.4.3 Orientation of IMs 14.4.4 Location of EM 14.4.5 Location of Internal Magnets (IMs) 14.4.6 Vibration of WORM 14.5 Discussion 14.5.1 Significance of Results 14.5.2 Limitations 14.5.3 Future Improvements 14.5.4 Future Potential Applications 14.6 Conclusion References 15 Deployable Compression Generating and Sensing for Wearable Compression-Aware Force Rendering 15.1 Introduction 15.2 Background 15.2.1 Anatomy of the Skin 15.2.2 Penetration Pathways for Drug Absorption 15.2.3 Transdermal Drug Delivery Technology 15.2.4 Wearable Haptic Systems 15.2.5 Origami Mechanism 15.2.6 Sensing Mechanism 15.3 Design Methodology 15.3.1 Origami Structural Design 15.3.2 Pressure Sensor Design 15.3.3 System Fabrication 15.3.4 Working Principle 15.4 Experiments 15.4.1 Pneumatic Origami Structure Motion Generation 15.4.2 Mechanical Test for Microfiber Sensor 15.4.3 Onboard Data Acquisition 15.4.4 Evaluation 15.5 Discussion 15.5.1 Improvements 15.5.2 Future Potential Applications 15.6 Conclusion References Part V Deployable Sensing Mechanisms 16 Kinesthesia Sensorization of Foldable Designs Using Soft Sensors 16.1 Introduction 16.2 Methods 16.3 Fabrication of the Soft Hydrogel Silver Nanowire Sensor 16.4 Results and Discussion 16.5 Conclusions References 17 Flat Foldable Kirigami for Chipless Wireless Sensing 17.1 Introduction 17.2 Theory 17.3 Materials and Methods 17.4 Tag Antenna Characterization 17.5 Wireless Sensors 17.6 Discussion 17.7 Conclusion Appendix 17.1: Literature Review Appendix 17.2: Sample of .s1p File with Interpretation Appendix 17.3: VNA Calibration Procedure References 18 Deployable Kirigami for Intra-Abdominal Monitoring 18.1 Introduction 18.1.1 Needs and Significance 18.1.2 Current Routes of Measuring IAP 18.1.3 Patent Space 18.1.4 Related Sensing Technologies 18.2 Methods 18.2.1 Test Kirigami Geometry 18.2.2 Parameter Characterization to Optimize the Selected Geometry 18.3 Results 18.3.1 RRC Test to Find Out the Geometry with the Best RRC 18.3.2 Parameter Characterization to Optimize the Selected Geometry 18.4 Discussion 18.5 Conclusion References 19 Stretchable Strain Sensors by Kirigami Deployable on Balloons with Temporary Tattoo Paper 19.1 Introduction 19.2 Related Work 19.2.1 Electronic Catheter Balloons 19.2.2 Kirigami Technique in Flexible Electronics 19.2.3 Intrinsically Flexible Conductive Materials 19.3 Materials and Methods 19.3.1 Phase I (Kirigami Design Cuts) 19.3.2 Analyze Kirigami Design Cuts of Phase I 19.3.3 Phase II (Adhere Gold Substrate to Balloon) 19.3.4 Finalize Construction Method 19.3.5 Analyze Both Fabrication Methods 19.4 Results and Discussion 19.4.1 Measurement of Normalized Resistance (ΔRR0) Against x-longitudinal Strain and y-axial Strain 19.4.2 Measurement of Pressure Against Volume 19.4.3 Setup Measurement of Air Volume Against Balloon Radius 19.4.4 Setup to Measure Resistance Against Volume 19.4.5 Normalized Resistance (ΔRR0) Against Radius Strain of the Balloon 19.4.6 Normalized Resistance (ΔRR0) Against Pressure 19.4.7 Normalized Resistance (ΔRR0) Against Volume 19.5 Conclusion and Future Work References Part VI Intelligent DMs with Multimodal Sensing 20 Multi-DOF Proprioceptive Origami Structures with Fiducial Markers 20.1 Introduction 20.2 Fiducial Tags in ML Estimations Using ArUco Markers 20.3 Crease Patterns 20.3.1 Pattern 1—3L1J (3 Legs 1 Joint) 20.3.2 Pattern 2—3L2Ja (3 Legs 2 Joints (a)) 20.3.3 Pattern 3—3L2Jb (3 Legs 2 Joints (b)) 20.3.4 Pattern 4—4L2J (4 Legs 2 Joints) 20.4 Calibrations 20.4.1 Triaxial Stiffness 20.4.2 Motion Estimation 20.4.3 Triaxial Load Sensitivity 20.4.4 Validation Using ATI-Nano 20.5 Results and Analysis 20.5.1 Motion Estimation 20.5.2 Force Sensitivity 20.5.3 Validation with ATI-Nano 20.5.4 Noise 20.5.5 Overview of Results 20.6 Discussion 20.7 Conclusion Appendix 1: Python Codes Appendix 2: Motion Estimation Appendix 3: Force Sensitivity Graphs Appendix 4: ML Sensor-ATI Overlapped Graphs Appendix 5: Noise Graphs References 21 Unsupervised Intelligent Pose Estimation of Origami-Inspired Deployable Robots 21.1 Introduction 21.1.1 Various Origami Motions 21.1.2 2D Feature Tracking 21.2 Visual Feature-Based Planar Motion Tracking 21.2.1 Vision-Based Trackers 21.2.2 Track Inchworm, Omega and Tumbling Motions 21.2.3 Future Alternative Spatial 6-DOF Tracking Using Aruco Markers 21.3 Sim2Real 6-DOF Pose Estimation Using Synthetic Data 21.3.1 Image Generation for Deep Learning-Based 3D Tracking 21.3.2 Domain Randomization 21.3.3 CDAE Network Architecture 21.4 Remarks and Alternative Approaches References