دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: Pradeep N PhD (editor), Sandeep Kautish (editor), Sheng-Lung Peng (editor) سری: ISBN (شابک) : 0128216336, 9780128216330 ناشر: Academic Press سال نشر: 2021 تعداد صفحات: 374 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 44 مگابایت
در صورت تبدیل فایل کتاب Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب حذف اطلاعات بزرگ ، یادگیری ماشین و یادگیری عمیق برای تجزیه و تحلیل مراقبت های بهداشتی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ابهام زدایی از داده های بزرگ، یادگیری ماشینی و یادگیری عمیق برای تجزیه و تحلیل مراقبت های بهداشتی دنیای در حال تغییر استفاده از داده ها را به ویژه در مراقبت های بهداشتی بالینی ارائه می دهد. تکنیکها، روششناسیها و الگوریتمهای مختلفی در این کتاب برای سازماندهی دادهها به شیوهای ساختاریافته ارائه شده است که به پزشکان در مراقبت از بیماران کمک میکند و به مهندسان زیستپزشکی و دانشمندان کامپیوتر کمک میکند تا تأثیر این تکنیکها را بر تجزیه و تحلیل مراقبتهای بهداشتی درک کنند. این کتاب به دو بخش تقسیم شده است: بخش 1 جنبه های کلان داده مانند سیستم های پشتیبانی تصمیم گیری مراقبت های بهداشتی و موضوعات مرتبط با تجزیه و تحلیل را پوشش می دهد. بخش 2 بر چارچوب ها و کاربردهای فعلی یادگیری عمیق و یادگیری ماشین تمرکز دارد و چشم اندازی از جهت گیری های آینده تحقیق و توسعه ارائه می دهد. کل کتاب یک رویکرد مطالعه موردی دارد و تعداد زیادی از مطالعات موردی در دنیای واقعی را در فصلهای کاربردی ارائه میکند تا به عنوان یک مرجع اساسی برای مهندسان زیستپزشکی، دانشمندان کامپیوتر، محققان مراقبتهای بهداشتی و پزشکان عمل کند.
Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics presents the changing world of data utilization, especially in clinical healthcare. Various techniques, methodologies, and algorithms are presented in this book to organize data in a structured manner that will assist physicians in the care of patients and help biomedical engineers and computer scientists understand the impact of these techniques on healthcare analytics. The book is divided into two parts: Part 1 covers big data aspects such as healthcare decision support systems and analytics-related topics. Part 2 focuses on the current frameworks and applications of deep learning and machine learning, and provides an outlook on future directions of research and development. The entire book takes a case study approach, providing a wealth of real-world case studies in the application chapters to act as a foundational reference for biomedical engineers, computer scientists, healthcare researchers, and clinicians.
Front Cover Demystifying Big Data, Machine Learning, and Deep Learning for Healthcare Analytics Copyright Dedication Contents Contributors Editors biography Foreword Preface Overview Section 1: Big data in healthcare analytics Chapter 1: Foundations of healthcare informatics 1.1. Introduction 1.2. Goals of healthcare informatics 1.3. Focus of healthcare informatics 1.4. Applications of healthcare informatics 1.5. Medical information 1.6. Clinical decision support systems 1.7. Developing clinical decision support systems 1.7.1. Traditional systems 1.7.2. Evidence-based medicine 1.7.3. Artificial intelligence and statistical inference-based approaches 1.8. Healthcare information management 1.9. Control flow 1.10. Other perspectives 1.11. Conclusion References Chapter 2: Smart healthcare systems using big data 2.1. Introduction 2.1.1. Background and driving forces 2.2. Big data analytics in healthcare 2.2.1. Disease prediction 2.2.2. Electronic health records 2.2.3. Real-time monitoring 2.2.4. Medical strategic planning 2.2.5. Telemedicine 2.2.6. Drug suggestions 2.2.7. Medical imaging 2.3. Related work 2.4. Big data for biomedicine 2.5. Proposed solutions for smart healthcare model 2.6. Role of sensor technology for eHealth 2.7. Major applications and challenges 2.8. Conclusion and future scope References Chapter 3: Big data-based frameworks for healthcare systems 3.1. Introduction 3.2. The role of big data in healthcare systems and industry 3.3. Big data frameworks for healthcare systems 3.4. Overview of big data techniques and technologies supporting healthcare systems 3.4.1. Cloud computing and architecture 3.4.2. Fog computing and architecture 3.4.3. Internet of things (IoT) 3.4.4. Internet of medical things (IoMT) 3.4.5. Machine learning (ML) 3.4.6. Deep learning 3.4.7. Intelligent computational techniques and data mining 3.5. Overview of big data platform and tools for healthcare systems 3.5.1. Hadoop architecture 3.5.2. Apache hadoop 3.5.3. Apache spark 3.5.4. Apache storm 3.6. Proposed big data-based conceptual framework for healthcare systems 3.6.1. Proposed system functionalities 3.6.1.1. Data sources 3.6.1.2. Patient healthcare-related data 3.6.1.3. Cloud and fog computing components 3.6.1.4. Big data analytics methods, techniques, and platform tools 3.6.1.5. Patient healthcare monitoring and recommendation system 6.1.6. Healthcare research and knowledge infrastructure 3.7. Conclusion References Chapter 4: Predictive analysis and modeling in healthcare systems 4.1. Introduction 4.2. Process configuration and modeling in healthcare systems 4.3. Basic techniques of process modeling and prediction 4.3.1. Process discovery 4.3.2. Enhancement 4.4. Event log 4.4.1. Event and attributes 4.4.2. Case, trace, and event log 4.4.3. Structure of an event log 4.5. Control perspective of hospital process using various modeling notations 4.5.1. Transition systems 4.5.2. Petri net 4.5.3. Workflow nets 4.5.4. Yet another workflow language (YAWL) 4.5.5. Business process modeling notation (BPMN) 4.5.6. Event-driven process chains (EPC) 4.5.7. Causal nets 4.6. Predictive modeling control flow of a process using fuzzy miner 4.6.1. Hospital process 4.6.2. Hospital treatment process 4.7. Open research problems 4.8. Conclusion References Chapter 5: Challenges and opportunities of big data integration in patient-centric healthcare analytics using mobile networks 5.1. Introduction 5.2. Elderly health monitoring using big data 5.2.1. eHealth 5.2.2. General health issues in the elderly 5.3. Personalized monitoring and support platform (MONISAN) 5.3.1. Proposed development 5.4. Patient-centric healthcare provider using big data 5.4.1. Resource allocation in mobile networks using big data analytics: A survey 5.4.2. Healthcare analytics: A survey 5.5. Patient-centric optimization model 5.5.1. Structure model 5.5.2. Classification using naïve Bayesian 5.5.3. Reduction of data 5.5.4. Generalization of data 5.5.5. The naïve Bayesian formulation techniques used to calculate patient priority using MILP 5.5.6. Formulation of problem 5.6. The WSRMAX approach-based MILP formulation 5.6.1. The optimization techniques used before providing priority to patients 5.7. MILP formulation-probability fairness approach 5.7.1. The optimization techniques used before providing priority to patients 5.7.2. After patients prioritization 5.7.2.1. Receiving power calculation 5.8. Heuristic approach 5.9. Results and discussion 5.9.1. The WSRMAX approach-based MILP and heuristic formulation 5.9.1.1. The optimization techniques used before providing priority to patients 5.9.1.2. After patient prioritization 5.9.2. Probability fairness approach 5.9.2.1. The optimization techniques used before providing priority to patients 5.9.2.2. After patient prioritization 5.10. Future directions 5.10.1. Choice of decision-making platform 5.10.2. Ranking features and selecting the most optimized feature 5.10.3. Integration with 5G 5.10.4. Infrastructure sharing 5.10.5. Wireless drug injection 5.11. Conclusion References Chapter 6: Emergence of decision support systems in healthcare 6.1. Introduction 6.1.1. Overview 6.1.2. Need for CDSS 6.1.3. Types of CDSS 6.1.4. Effectiveness and applications of CDSS 6.2. Transformation in healthcare systems 6.2.1. Adoption of CDSS 6.2.2. Key findings 6.2.3. Enterprise-level adaptation 6.2.4. Health IT infrastructure 6.3. CDS-based technologies 6.3.1. Supervised learning techniques 6.3.1.1. Decision tree 6.3.1.2. Logistic regression 6.3.1.3. Neural networks 6.3.2. Unsupervised learning techniques 6.3.3. Disease diagnosis techniques 6.3.3.1. Domain selection 6.3.3.2. Knowledge base-construction 6.3.3.3. Algorithms and user interface 6.3.4. CDS-related issues 6.4. Clinical data-driven society 6.4.1. Information extraction 6.4.2. CDS today and tomorrow 6.5. Future of decision support system 6.6. Example: Decision support system 6.6.1. CDSS for liver disorder identification 6.7. Conclusion References Section 2: Machine learning and deep learning for healthcare Chapter 7: A comprehensive review on deep learning techniques for a BCI-based communication system 7.1. Introduction 7.1.1. Brain signals 7.1.1.1. Brain computer interface 7.1.1.2. Electric potential source for BCI 7.1.1.3. Evoked potential 7.1.1.4. Event-related potential (ERP) 7.2. Communication system for paralytic people 7.2.1. Oculography-based control systems 7.2.2. Morse code-based assistive tool 7.2.3. Sensor-based systems 7.2.4. EEG-based systems 7.3. Acquisition system 7.3.1. Benchmark datasets 7.4. Machine learning techniques in EEG signal processing 7.4.1. Support vector machine 7.4.2. k-NN 7.4.3. Logistic regression 7.4.4. Naïve Bayes 7.5. Deep learning techniques in EEG signal processing 7.5.1. Deep learning models 7.5.1.1. Supervised deep learning 7.5.1.2. Convolutional neural network (CNN) 7.5.1.3. RNN 7.5.1.4. Unsupervised deep learning 7.5.1.5. Autoencoder 7.5.1.6. Semisupervised deep learning 7.5.1.7. Deep belief network 7.5.2. Deep learning in feature extraction 7.5.3. Deep learning for classification 7.6. Performance metrics 7.7. Inferences 7.8. Research challenges and opportunities 7.8.1. Using multivariate system 7.8.2. The dimensionality of the data 7.8.3. Artifacts 7.8.4. Unexplored areas 7.9. Future scope 7.10. Conclusion Acknowledgments References Chapter 8: Clinical diagnostic systems based on machine learning and deep learning 8.1. Introduction 8.2. Literature review and discussion 8.2.1. Major findings in problem domain 8.3. Applications of machine learning and deep learning in healthcare systems 8.3.1. Heart disease diagnosis 8.3.2. Predicting diabetes 8.3.3. Prediction of liver disease 8.3.4. Robotic surgery 8.3.5. Cancer detection and prediction 8.3.6. Personalized treatment 8.3.7. Drug discovery 8.3.8. Smart EHR 8.4. Proposed methodology 8.4.1. Intraabdominal ultrasound image acquisition 8.4.2. Ultrasound image enhancement 8.4.3. Segmentation of the RoI image 8.4.4. Intraabdominal organ identification using deep neural network 8.4.5. Feature extraction 8.4.6. Abnormality identification and categorization 8.5. Results and discussion 8.6. Future scope and perceptive 8.7. Conclusion References Chapter 9: An improved time-frequency method for efficient diagnosis of cardiac arrhythmias 9.1. Introduction 9.2. Methods 9.2.1. Dual tree wavelet transform 9.2.2. Support vector machines (SVMs) 9.2.3. PSO technique 9.3. Proposed methodology 9.3.1. Database 9.3.2. Denoising 9.3.3. QRS wave localization and windowing 9.3.4. Input representation 9.3.5. Feature classification 9.3.6. Performance metrics 9.4. Experiments and simulation performance 9.4.1. Evaluation in patient-specific scheme 9.4.2. Advantages of proposed method 9.5. Conclusion and future scope References Chapter 10: Local plastic surgery-based face recognition using convolutional neural networks 10.1. Introduction 10.2. Overview of convolutional neural network 10.2.1. Convolutional layer 10.2.2. Pooling layers 10.2.3. Fully connected layers 10.2.4. Activation functions 10.2.5. CNN architectures 10.2.5.1. LeNet 10.2.5.2. AlexNet 10.2.5.3. ZFNet 10.2.5.4. VGG 10.2.5.5. GoogLeNet 10.2.5.6. ResNet 10.3. Literature survey 10.4. Design of deep learning architecture for local plastic surgery-based face recognition 10.4.1. Proposed CNN model 10.4.1.1. Convolution layer 10.4.1.2. Pooling layer 10.4.1.3. Fully connected layer 10.4.1.4. Parameter tuning 10.5. Experimental setup 10.6. Database description 10.7. Results 10.8. Conclusion and future scope References Chapter 11: Machine learning algorithms for prediction of heart disease 11.1. Introduction 11.1.1. Introduction to ML 11.1.2. Types of ML 11.1.2.1. Supervised learning 11.1.2.2. Unsupervised learning 11.1.2.3. Semisupervised learning 11.1.2.4. Reinforcement learning 11.2. Literature review 11.3. ML workflow 11.3.1. Data collection 11.3.2. Cleaning and preprocessing 11.3.3. Feature selection 11.3.4. Model selection 11.3.5. Training and evaluation 11.4. Experimental setup 11.5. Supervised ML algorithms 11.5.1. Support vector machine 11.5.2. Logistic regression 11.5.3. Decision tree 11.5.4. Naive Bayes classifier 11.6. Ensemble ML models 11.6.1. Majority voting 11.6.2. Weighted average voting 11.6.3. Bagging 11.6.4. Gradient boosting 11.7. Results and discussion 11.7.1. Visualization of performance metrics of base learners 11.7.2. Visualization of performance metrics of ensemble learners 11.8. Summary Acknowledgments References Chapter 12: Convolutional Siamese networks for one-shot malaria parasite recognition in microscopic images 12.1. Introduction 12.2. Related works 12.2.1. State-of-the-art methods for one-shot learning 12.2.2. Siamese network for face recognition and verification 12.2.3. Siamese network for scene detection and object tracking 12.2.4. Siamese network for two-stage learning and recognition 12.2.5. Siamese network for medical applications 12.2.6. Siamese network for visual tracking and object tracking 12.2.7. Siamese network for natural language processing 12.3. Materials and methods 12.4. Proposed methodology 12.4.1. Siamese neural architecture 12.4.2. Training, parameter tuning, and evaluation 12.5. Results and discussions 12.6. Conclusions References Chapter 13: Kidney disease prediction using a machine learning approach: A comparative and comprehensive analysis 13.1. Introduction 13.1.1. Causes of chronic kidney disease 13.1.2. Detection of chronic kidney disease 13.1.3. Treatments for chronic kidney disease 13.2. Machine learning importance in disease prediction 13.3. ML models used in the study 13.3.1. KNN classifier 13.3.2. Logistic regression 13.3.3. Support vector machine 13.3.4. Random forest 13.3.5. Naïve Bayes 13.3.6. Artificial neural network 13.3.7. AdaBoost 13.4. Results and discussion 13.4.1. Quality measurement 13.4.1.1. Information gain 13.4.1.2. Gain ratio 13.4.1.3. Gini Index 13.4.1.4. Chi-squared distribution 13.4.1.5. FCBF 13.4.2. Evaluation techniques 13.4.2.1. Confusion matrix 13.4.2.2. Receiver operating characteristic (ROC) curve 13.4.3. Dataset description 13.4.4. Model configurations 13.4.5. Result analysis with information gain 13.4.6. Result analysis with information gain ratio 13.4.7. Result analysis with Gini Index 13.4.8. Result analysis with chi-square 13.5. Conclusion References Index Back Cover