دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Sayyad Nojavan (editor). Kazem Zare (editor)
سری:
ISBN (شابک) : 3030313980, 9783030313982
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 287
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 13 مگابایت
در صورت ایرانی بودن نویسنده امکان دانلود وجود ندارد و مبلغ عودت داده خواهد شد
در صورت تبدیل فایل کتاب Demand Response Application in Smart Grids: Concepts and Planning Issues - Volume 1 به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب کاربرد پاسخگویی به تقاضا در شبکه های هوشمند: مفاهیم و مسائل برنامه ریزی - جلد 1 نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Preface Contents About the Editors Chapter 1: Concept and Glossary of Demand Response Programs 1.1 Introduction 1.2 Demand-Side Management 1.2.1 Demand Response Programs’ Definition 1.2.2 Demand Response Programs’ Benefits 1.3 Applications of DRP in Power Systems 1.3.1 DRP for Planning of Power Systems 1.3.1.1 Distribution Expansion Planning (DEP) 1.3.1.2 Generation and Transmission Expansion Planning (GEP and TEP) 1.3.1.3 Resource Allocation 1.3.2 DRP for Operation of Power Systems 1.3.2.1 Frequency Regulation 1.3.2.2 RES Integration 1.3.2.3 Market Performance 1.3.2.4 Energy Hub Scheduling 1.3.2.5 Distribution Network Operation 1.3.2.6 Generation and Transmission Level Operation 1.4 Conclusion References Chapter 2: Comprehensive Modeling of Demand Response Programs 2.1 Introduction 2.2 Modeling of DRPs 2.2.1 Linear and Nonlinear Customer Demand Functions 2.2.2 Price Elasticity of Demand 2.2.3 Linear Modeling of Price-Based DRPs 2.2.4 Linear Modeling of Price-Based/Incentive-Based DRPs 2.2.5 Nonlinear Modeling of Price-Based/Incentive-Based DRPs 2.2.6 Flexible Price Elasticity of Demand 2.2.6.1 Linear Model 2.2.6.2 Power Model 2.2.6.3 Exponential Model 2.2.6.4 Logarithmic Model 2.2.6.5 Hyperbolic Model 2.2.7 Comprehensive Modeling of DRPs 2.2.8 Customer Response to DRPs Using Optimization Methods 2.2.9 Market Clearing Programs 2.3 Conclusion References Chapter 3: Linear and Nonlinear Modeling of Demand Response Programs 3.1 Introduction 3.2 Demand Response Models 3.2.1 Linear Demand Response Model 3.2.2 Nonlinear Demand Response Models 3.2.2.1 Power Model 3.2.2.2 Exponential Model 3.2.2.3 Logarithmic Model 3.3 DRPs Prioritization Procedure 3.4 Conclusion References Chapter 4: Modeling an Improved Demand Response Program in Day-Ahead and Intra-day Markets 4.1 Introduction 4.2 Incentive-Based Demand Response Program (IBDRP) 4.3 Formulation of an Improved IBDRP 4.3.1 Elasticity Coefficients 4.3.2 The Proposed IBDRP in Day-Ahead and Intra-day Market 4.4 Numerical Results 4.4.1 Case Study I: Peak Load of Spanish Electricity Market 4.4.2 Case Study II: Domestic Consumers 4.5 Conclusions References Chapter 5: New Demand Response Platform with Machine Learning and Data Analytics 5.1 Introduction 5.2 Machine Learning and Data Science 5.3 Topics on Machine Learning Methods 5.3.1 Introduction 5.3.2 ML Process 5.3.3 Supervised, Unsupervised, and Semi-supervised Problems 5.3.3.1 Supervised Machine Learning 5.3.3.2 Unsupervised Machine Learning 5.3.3.3 Semi-supervised Machine Learning 5.3.4 Decision Tree Learning 5.3.5 Deep Learning 5.3.6 Reinforcement Learning 5.4 Machine Learning in Electricity Markets 5.4.1 Characteristics of Electricity Prices 5.4.2 Electricity Price Modeling 5.4.3 Examples of ML for Price Design in Electricity Markets 5.4.4 ML for Customer Behavior Learning 5.4.4.1 Load Forecast 5.4.4.2 Load Profiling for Load Forecast 5.4.4.3 ML for User Comfort and Preferences 5.4.4.4 Machine Learning to Evaluate the Price Elasticity 5.4.5 EV Charging Management 5.4.5.1 Numerical Example 5.5 Applications of Machine Learning and Data Analytics in DR 5.5.1 Uncovering Unknown Electricity Consumption Patterns 5.5.2 Convincing More Customers to Enrol in DR Programs 5.5.3 EV Integration 5.5.4 Obtain Customers’ Loyalty 5.6 Benefits, Challenges, and Drawbacks of Machine Learning Implementation in DR 5.6.1 Benefits 5.6.2 Barriers, Challenges, and Problems 5.7 Conclusion 5.7.1 Future Works References Chapter 6: Demand-Side Management Programs of the International Energy Agency 6.1 Introduction 6.2 The International Energy Agency Demand-Side Management Program 6.3 Tasks 6.3.1 Completed Tasks 6.3.1.1 Task 1 Achieved Results 6.3.1.2 Task 2 Communications Technologies for Demand-Side Management Achieved Results 6.3.1.3 Task 3 Cooperative Procurement of Innovative Technologies for Demand-Side Management 6.3.1.4 Task 4 Development of Improved Methods for Integrating Demand-Side Management into Resource Planning 6.3.1.5 Task 5 Techniques for Implementation of Demand-Side Management Technology in the Marketplace Achieved Result 6.3.1.6 Task 6 DSM and Energy Efficiency in Changing Electricity Business Environments Achieved Results 6.3.1.7 Task 7 International Collaboration on Market Transformation Achieved Results 6.3.1.8 Task 8 Demand-Side Bidding in a Competitive Electricity Market Achieved Results 6.3.1.9 Task 9 The Role of Municipalities in a Liberalized System Achieved Results 6.3.1.10 Task 10 Performance Contracting Achieved Results 6.3.1.11 Task 11 Time-of-Use Pricing and Energy Use for Demand Management Delivery Achieved Results 6.3.1.12 Task 12 Cooperation on Energy Standards 6.3.1.13 Task 13 Demand Response Resources Achieved Results 6.3.1.14 Task 14 Market Mechanisms for White Certificates Trading Achieved Results 6.3.1.15 Task 15 Network-Driven DSM Achieved Results 6.3.1.16 Task 16 Competitive Energy Services (Energy Contracting ESCo Services) Achieved Results 6.3.1.17 Task 17 Integration of DSM, Energy Efficiency, Distributed Generation, Renewable Energy Sources, and Energy Storages, Phases 1–3 6.3.1.18 Task 18 Demand-Side Management and Climate Change 6.3.1.19 Task 19 Micro-Demand Response and Energy Saving Achieved Results 6.3.1.20 Task 20 Branding of Energy Efficiency Achieved Results 6.3.1.21 Task 21 Standardization of Energy-Saving Calculations Achieved Results 6.3.1.22 Task 22 Energy Efficiency Portfolio Standards Achieved Results 6.3.1.23 Task 23 The Role of the Demand Side in Delivering Effective Smart Grids Achieved Results 6.3.1.24 Task 24 Phase I: Behavior Change in DSM: From Theory to Policies and Practice 6.3.1.25 Task 24 Phase II: Behavior Change in DSM: Helping the Behavior Changers 6.3.2 Current Task 6.3.2.1 Task 25 Business Models for a more Effective Market Uptake of DSM Energy Services 6.4 Conclusion References Chapter 7: Demand Response Application in Generation, Transmission, and Distribution Expansion Planning 7.1 Introduction 7.1.1 Motivation 7.1.2 Literature Review 7.1.3 Contributions 7.2 Planning Model 7.2.1 Demand Response-Based Generation Expansion Model 7.2.1.1 Investment Cost of Generation Expansion Planning (GEP) 7.2.1.2 Performance Cost of GEP 7.2.1.3 Demand Response Cost of GEP 7.2.2 Demand Response-Based Transmission Expansion Planning 7.2.2.1 Investment Cost of TEP 7.2.2.2 Performance Cost of TEP 7.2.2.3 Demand Response Cost 7.2.3 Demand Response-Based Distribution Expansion Planning (DEP) 7.2.3.1 Investment Cost of DEP 7.2.3.2 Performance Cost of DEP 7.2.3.3 Demand Response Cost of DEP 7.3 Multipurpose Comprehensive Learning Bacterial Foraging (MP-CLBF) Algorithm 7.3.1 Health Assessment 7.3.2 Non-dominance Process 7.3.3 Comprehensive Learning Concept 7.3.4 Inspection of Limitations 7.4 Fuzzy TOPSIS Concept 7.5 Flowchart of the Proposed Model 7.6 Numerical Study 7.6.1 DR-Based Generation Expansion Planning 7.6.2 DR-Based Transmission Expansion Planning 7.6.3 DR-Based Distribution Expansion Planning 7.7 Conclusion References Chapter 8: Optimal Stochastic Planning of DERs in a Game Theory Framework Considering Demand Response and Pollution Issues 8.1 Introduction 8.2 Problem Formulation 8.3 Scenario Generation 8.4 Stackelberg Game and Distributed Algorithm 8.5 Numerical Results 8.6 Conclusion References Chapter 9: Impact of Demand Response Program on Hybrid Renewable Energy System Planning 9.1 Introduction 9.2 The Optimal Planning of HRES 9.3 Demand Response (DR) 9.3.1 Different DR Programs 9.3.2 Variety of the Loads and DR Resources 9.3.3 The Contribution of DR in HRES Planning 9.4 Optimization Problem 9.4.1 Objective Function 9.4.2 HOMER Optimization Tool 9.4.3 The Levelized Cost of Energy (LCoE) 9.5 HRES Components 9.5.1 Wind Turbine (WT) 9.5.2 Photovoltaic (PV) Cell System 9.5.3 Energy Storage System (ESS) 9.5.4 Convertors 9.6 Simulation Results 9.6.1 Case Study 9.6.2 Results and Discussions 9.6.2.1 Scenario I: Only RES 9.6.2.2 Scenario II: RES and Microturbine 9.6.2.3 Scenario III: RES and Grid Connection 9.7 Conclusions References Chapter 10: The Application of Demand Response Program on the Dynamic Planning of Energy Storage System Allocation in Distribution Networks 10.1 Introduction 10.1.1 Literature Review 10.1.2 Chapter Organization 10.2 Problem Formulation 10.2.1 Objective Function 10.2.2 ACPF Constraints 10.2.3 Distributed Generation 10.2.4 ESS Constraints 10.2.5 Demand Response Program 10.3 Case Study 10.3.1 Necessary Data 10.4 Results 10.4.1 Case 1: ACOPF on the MG 10.4.2 Case 2: Optimal ESS Sizing and Siting Without DRP 10.4.3 Case 3: Optimal ESS Sizing and Siting Considering DRP 10.5 Conclusion References Chapter 11: FACTS Device Allocation in the Presence of Demand Response Program 11.1 Introduction 11.2 DFACTS Devices 11.3 Advantages of DFACTS 11.4 Various Technologies of DFACTS 11.4.1 DSTATCOM 11.4.2 DVR 11.5 The Optimization Method of Location and Size of DFACTS 11.5.1 Formulation of the DR Program 11.5.2 Objective Functions 11.5.2.1 The Loss Index 11.5.2.2 The Voltage Index 11.5.3 Multi-Objective Optimization Algorithm 11.6 Simulation Results 11.7 Conclusion References Index