دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
دسته بندی: انرژی ویرایش: نویسندگان: Lakhveer Singh. Durga Madhab Mahapatra سری: Bioelectrochemical Systems: The Way Forward, 1 ISBN (شابک) : 9780128218419, 012821841X ناشر: Elsevier سال نشر: 2020 تعداد صفحات: 230 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 9 مگابایت
در صورت تبدیل فایل کتاب Delivering Low-Carbon Biofuels with Bioproduct Recovery: An Integrated Approach to Commercializing Bioelectrochemical Systems به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب ارائه سوخت های زیستی کم کربن با بازیابی بیو محصول: رویکردی یکپارچه برای تجاری سازی سیستم های بیوالکتروشیمیایی نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
ارائه سوخت های زیستی کم کربن با بازیابی محصولات زیستی: یک رویکرد یکپارچه برای تجاری سازی سیستم های بیوالکتروشیمیایی مسیرهای فعلی را برای تولید انرژی زیستی از سلول های سوختی بیوالکترواکتیو (BEFC) و محصولات جانبی ارزشمند آنها با استفاده از رویکردهای سیستم های بیوالکتروشیمیایی (BES) بررسی می کند. این کتاب بر روی روشهای کلیدی، طرحهای فعلی و گونههای تثبیتشده رویکردهای پردازش سوختهای زیستی، همچنین شامل مطالعات موردی تمرکز دارد. فصلها جنبههای حیاتی روشهای طراحی بیوراکتور، اصول عملیاتی، حساسیت بیوراکتور و محدودیتهای سیستم را بررسی میکنند. این کتاب از آسیبپذیری و تشخیص نقاط مهم از طریق روشهای شبیهسازی و مدلسازی پشتیبانی میکند. فصلهای پایانی محرکهایی را برای افزایش مقیاس و تجاریسازی سیستمهای بیوالکتروشیمیایی ایجاد میکنند. در مورد تمام سوختهای زیستی عمده تجاری با دوام، همراه با محصولات جانبی با ارزش آنها، تمرکز بر مرزهای فناوریهای سوخت زیستی کم کربن با پتانسیل تجاریسازی و افزایش مقیاس.
Delivering Low-Carbon Biofuels with Bioproduct Recovery: An Integrated Approach to Commercializing Bioelectrochemical Systems explores current pathways to produce both the bioenergy from bioelectroactive fuel cells (BEFC) and their valuable byproducts using bioelectrochemical systems (BES) approaches. The book focuses on key methods, current designs and established variants of biofuels processing approaches, also including case studies. Chapters review crucial aspects of bioreactor design methodologies, operating principles, bioreactor susceptibility and systems constraints. The book supports vulnerability and hotspot detection through simulation and modeling approaches. Concluding chapters establish drivers for realizable scale-up and commercialization of bioelectrochemical systems. Discusses all major commercially viable biofuels, along with their high-value byproducts Focuses on frontiers of low carbon biofuel technologies with commercialization and scale-up potential Supported by schematics that outline integration with bioelectrochemical systems (BES) approaches
Title-page_2021_Delivering-Low-Carbon-Biofuels-with-Bioproduct-Recovery Delivering Low-Carbon Biofuels with Bioproduct Recovery Copyright_2021_Delivering-Low-Carbon-Biofuels-with-Bioproduct-Recovery Copyright Contents_2021_Delivering-Low-Carbon-Biofuels-with-Bioproduct-Recovery Contents List-of-Contributor_2021_Delivering-Low-Carbon-Biofuels-with-Bioproduct-Reco List of Contributors Chapter-1---Electrical-energy-produced-by-microb_2021_Delivering-Low-Carbon- 1 Electrical energy produced by microbial fuel cells using wastewater to power a network of smart sensors 1.1 Introduction 1.2 Microbial fuel cells 1.2.1 Microbial fuel cells theoretical analysis 1.2.2 Energy extraction from microbial fuel cells 1.2.2.1 General principle 1.2.2.2 Improving energy production from microbial fuel cells 1.2.2.2.1 The benchmark: polarization curve on a small volume microbial fuel cell 1.2.2.2.2 Increasing the size of the reactor 1.2.2.2.3 Series and parallel association 1.2.2.2.4 Continuous versus intermittent mode of operation 1.2.2.3 Closing remarks 1.3 Energy production, regulation and storage 1.3.1 Energy regulation and storage 1.3.1.1 Starting stage 1.3.1.2 Regular operation stage 1.3.1.3 Oscillator 1.3.1.4 Voltage comparator 1.3.1.5 Field effect transistor driver 1.3.1.6 Voltage supervisor 1.4 Smart sensor structure and operation 1.5 Conclusions Acknowledgments References Chapter-2---Application-of-bioelectrochemical-_2021_Delivering-Low-Carbon-Bi 2 Application of bioelectrochemical systems in wastewater treatment and hydrogen production 2.1 Introduction 2.2 MEC fundamentals and working principles 2.3 Electron transfer mechanism 2.4 MEC technology in hydrogen production using wastewater 2.5 Agro wastewater 2.6 Domestic waste water 2.7 Industrial wastewater 2.8 Fermentation effluent 2.9 Nutrient and heavy metals removals in MEC 2.10 Integrated MEC approach 2.11 Conclusions Acknowledgments References Chapter-3---Nutrient-removal-and-recover_2021_Delivering-Low-Carbon-Biofuels 3 Nutrient removal and recovery in bioelectrochemical systems 3.1 Introduction 3.2 Nitrogen removal and recovery 3.2.1 Issues related to conventional technologies 3.2.2 Nitrogen removal in bioelectrochemical system 3.2.2.1 Reactor configuration for bioelectrochemical nitrogen transformation 3.2.2.2 Groundwater remediation using bioelectrochemical system 3.2.2.3 Influential operational parameters 3.2.2.4 Bacteriological approaches 3.2.3 Ammonia recovery 3.2.4 Challenges in nitrogen removal and recovery 3.3 Phosphorus removal and recovery 3.3.1 Issues related to biological phosphorus removal 3.3.2 Struvite precipitation 3.3.3 Phosphorus removal and recovery in bioelectrochemical system 3.3.4 Challenges in phosphorus removal and recovery 3.4 Conclusion and future perspectives References Chapter-4---Role-of-bioelectrochemical-systems_2021_Delivering-Low-Carbon-Bi 4 Role of bioelectrochemical systems for bioremediation of wastewaters and bioenergy production 4.1 Introduction 4.2 Principle of bioelectrochemical systems 4.3 Kinds of bioelectrochemical systems 4.3.1 Microbial fuel cells 4.3.2 Microbial electrolysis cells for energy 4.3.3 Microbial electrosynthesis for energy production 4.3.4 Enzymatic fuel cells for energy production 4.3.5 Microbial solar cells for energy production 4.3.6 Plant microbial fuel cells for energy production 4.3.7 Microbial desalination cells for energy production 4.4 Role of bioelectrochemical systems in remediation of pollutants 4.4.1 Remediation of organic xenobiotics 4.4.1.1 Azo dyes remediation 4.4.1.2 Nitrobenzene compounds remediation 4.4.1.3 Chloronitrobenzene remediation 4.4.1.4 Remediation of polychlorobiphenyl pollutants 4.4.1.5 Polyaromatic hydrocarbons and related compounds remediation 4.4.2 Treatment of inorganic pollutants 4.4.2.1 Remediation of bromate and chlorate 4.4.2.2 Treatment of heavy metals 4.5 Sustainability of the technology 4.6 Scaling up of the technology 4.7 Conclusion Acknowledgments References Chapter-5---Energy-generation-from-fish-pro_2021_Delivering-Low-Carbon-Biofu 5 Energy generation from fish-processing waste using microbial fuel cells 5.1 Introduction 5.2 National Green Technology Policy 5.2.1 Waste from fresh markets 5.2.2 Fish-processing wastewater characteristics 5.2.2.1 Physiochemical parameters 5.2.2.1.1 pH 5.2.2.1.2 Solids content 5.2.2.1.3 Odor 5.2.2.1.4 Temperature 5.2.2.1.5 Organic content 5.2.2.1.6 Biochemical oxygen demand 5.2.2.1.7 Chemical oxygen demand 5.2.2.1.8 Nitrogen and phosphorus 5.3 Microbial fuel cell system 5.3.1 Substrates used in microbial fuel cell 5.3.2 Fish-processing waste as substrate 5.4 Treatment methodology of fish-waste using microbial fuel cell (a Malaysian case study) 5.4.1 Preparing the substrate 5.4.2 Testing for physical, chemical, and biological parameters 5.4.3 Electrode 5.5 Results observation 5.5.1 Voltage production 5.5.2 Biochemical oxygen demand removal 5.5.3 Chemical oxygen demand removal 5.5.4 Nitrogen 5.5.5 Phosphorous 5.6 Conclusion References Chapter-6---Microbial-electrosynthesis--Reco_2021_Delivering-Low-Carbon-Biof 6 Microbial electrosynthesis: Recovery of high-value volatile fatty acids from CO2 6.1 Introduction 6.2 Basic principle of microbial electrosynthesis cell 6.3 Factors affecting product titer 6.3.1 The effect of pH 6.3.2 Fluctuations in electricity supply 6.3.3 Impact of inoculum 6.3.4 Electrode materials 6.3.5 Effect of electrode potential 6.3.6 Effect of reactor design 6.4 Strategies to improve product titer 6.5 Economic evaluation 6.6 Future scope of work 6.7 Conclusion References Chapter-7---Low-carbon-fuels-and-el_2021_Delivering-Low-Carbon-Biofuels-with 7 Low carbon fuels and electro-biocommodities 7.1 Introduction 7.2 Working mechanism of bioelectrochemical systems 7.3 Application of microbial electrochemical technologies in wastewater treatment 7.4 Electro-biocommodities and value-added biochemical’s production 7.4.1 Biohydrogen production 7.4.2 Biomethane production 7.4.3 Bioethanol production 7.4.4 Acetate production 7.4.5 Hydrogen peroxide production 7.4.6 Other value-added biochemical production 7.5 Recent progress for electro-biocommodities generation in a bioelectrochemical system 7.6 Conclusion Acknowledgment References Chapter-8---Potential-of-high-energy-co_2021_Delivering-Low-Carbon-Biofuels- 8 Potential of high energy compounds: Biohythane production 8.1 Introduction 8.2 Main aspects of the biohythane generation in bioelectrochemical system 8.3 Substrate for biohythane generation 8.4 Recent progress for biohythane generation in bioelectrochemical system 8.5 Use of biohythane 8.6 Future prospects and concluding remarks Acknowledgment References Chapter-9---Biological-and-chemical-reme_2021_Delivering-Low-Carbon-Biofuels 9 Biological and chemical remediation of treated wood residues 9.1 Introduction 9.2 Environmental risks of treated wood 9.3 Remediation and recovery of treated wood 9.3.1 Bioremediation 9.3.2 Mechanisms used by fungi in the remediation process 9.3.3 Chemical remediation 9.4 Concluding remarks References Chapter-10---An-overview-on-degradation-kinetics_2021_Delivering-Low-Carbon- 10 An overview on degradation kinetics of organic dyes by photocatalysis using nanostructured electrocatalyst 10.1 Introduction 10.2 Organic dyes 10.3 Classification of organic dyes 10.4 Methods for the removal of pollutants 10.5 Advanced oxidation processes 10.6 Photocatalysis 10.7 Photocatalysts 10.8 Photocatalyst surface modifications 10.9 Kinetics of photocatalytic degradation 10.10 Photocatalytic reaction parameters 10.11 Photocatalytic activity of nonmetals and metalloids supported nanophotocatalyst 10.12 Photocatalytic activity of polymer supported nanophotocatalyst 10.13 Conclusions References Index_2021_Delivering-Low-Carbon-Biofuels-with-Bioproduct-Recovery Index