دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: illustrated
نویسندگان: Di Benedetto. H.
سری:
ISBN (شابک) : 9058096041, 9789058096043
ناشر: Taylor & Francis Group
سال نشر: 2003
تعداد صفحات: 1347
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 121 مگابایت
در صورت تبدیل فایل کتاب Deformation Characteristics of Geomaterials: Proceedings of the Third International Symposium on Deformation Characteristics of Geomaterials : IS Lyon 2003 : 22-24 September 2003, Lyon, France به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب مشخصات تغییر شکل ژئومتریال: مجموعه مقالات سومین سمپوزیوم بین المللی در خصوص ویژگی های تغییر شکل ژئومتریال ها: IS Lyon 2003: 22-24 سپتامبر 2003، لیون، فرانسه نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
موضوعات اصلی این کنفرانس، بررسی های تجربی در مورد خواص تغییر شکل - از کرنش های بسیار کوچک تا فراتر از شکست، تفسیرهای آزمایشگاهی، مشاهدات درجا و میدانی، و خصوصیات رفتاری و مدل سازی است. تاکید بر کاوش در تحقیقات اخیر در مورد تنش های مربوط به زمان، و استفاده از تست های ژئوتکنیکی پیشرفته برای مشکلات مهندسی واقعی است.
The main themes of this conference are experimental investigations into deformation properties - from very small strains to beyond failure, laboratory, in-situ and field observation interpretations, and behaviour characterization and modelling. Emphasis is placed on exploring recent investigations into time-related stresses, and on applying advanced geotechnical testing to real engineering problems.
Deformation Characteristics of Geomaterials......Page 2
Table of Contents......Page 4
Foreword......Page 14
Introduction......Page 15
Organisation......Page 17
Discussion Session 1: Testing and apparatus lab and in-situ, data acquisition Essais et appareils de laboratoire et in-situ, acquisition de données......Page 18
2 OUTLINE OF THE METHOD......Page 19
4.1 Analytical formulations......Page 20
4.2 Finite element model......Page 21
4.3 Influence of the confining water pressure on the natural frequency of the sample......Page 22
6 TESTING ON SILT SAMPLES......Page 23
7 CONCLUSIONS AND REMARKS......Page 25
Resonant frequency: Rayleigh’s method......Page 26
2 TEST INTERPRETATION......Page 28
3 EQUIPMENT......Page 30
4.1.2 Vincent Street......Page 31
4.2 Strongly inversely dispersive profiles......Page 32
4.2.2 East Street, Fremantle......Page 33
REFERENCES......Page 35
1 INTRODUCTION......Page 36
2 DESCRIPTION OF THE NEW SYSTEM......Page 37
3 SYSTEM CALIBRATION......Page 39
4 SOILS TESTED......Page 40
5.2 Consolidation of kaolin clay slurry......Page 41
6.1 1-g Silica sand test......Page 42
REFERENCES......Page 43
3.1 CCD unit......Page 45
3.2 System of CCD measurement......Page 46
4.1 Polyurethane rubber......Page 47
4.3 Plaster with sand including a sheet of paper......Page 48
REFERENCES......Page 50
2.1 Optic Fiber Bragg grating strain sensors......Page 51
2.2 The pipe strain gage......Page 52
3.1 Preparation of the artificial soft rock sample......Page 53
4.1 Displacement distribution......Page 54
4.2 Analysis of the test data......Page 55
REFERENCES......Page 56
2.1 Test apparatus......Page 57
3.1 Displacement vectors......Page 58
3.2 Strain analysis......Page 59
ACKNOWLEDGMENT......Page 60
REFERENCES......Page 61
2 SAMPLERS......Page 62
3 TESTING PROGRAMME......Page 63
4 RESULTS AND EVALUATION......Page 64
4.3 Diameter and other effects......Page 65
4.4 Oedometer tests......Page 66
REFERENCES......Page 67
1 INTRODUCTION......Page 69
2.1 Elastic cylinder under a harmonic oscillation......Page 70
2.2 Elastic-viscoelastic correspondence principle......Page 71
4 DYNAMIC PROPERTIES OF KAOLIN......Page 72
REFERENCES......Page 73
2 LARGE-SCALE, FREE-FREE RESONANT COLUMN DEVICE......Page 75
2.1 Linear measurements at small strains......Page 77
3 PHYSICAL CHARACTERISTICS OF RECONSTITUTED AND INTACT SPECIMENS......Page 78
4.1 Small-strain shear modulus, Gmax......Page 79
5 SUMMARY AND CONCLUSIONS......Page 81
REFERENCES......Page 82
2 EQUIPMENT AND PROCEDURE......Page 84
3.1 Influence of frequency......Page 86
3.2 Influence of waveform......Page 88
3.4 Comparison with other data......Page 89
4 SUMMARY......Page 90
REFERENCES......Page 91
1.2 Modulus degradation schemes......Page 92
2.2 Soil properties and the seismic piezocone......Page 93
3.1 Onsøy, Norway......Page 94
3.2 Skå Edeby, Sweden......Page 95
3.3 San Francisco, California, USA......Page 96
REFERENCES......Page 97
2.1 Reconstitution des massifs de sable......Page 99
2.3 Nouvelle tentative de simulation du cycle de vie du sable......Page 100
2.4.2 Coefficient d’écoulement......Page 101
2.4.3.2 Résultats......Page 102
3.1 Reconstitution des massifs d’argile......Page 103
3.4 Consolidation......Page 104
NOTATIONS......Page 105
REFERENCES......Page 106
2.1 Purpose......Page 107
2.2 Procedure......Page 108
2.3 Results......Page 109
3.2 Procedure......Page 110
3.3 Results......Page 111
4 DISCUSSION......Page 112
5 CONCLUSION......Page 113
REFERENCES......Page 114
1 INTRODUCTION......Page 115
2 MULTI-DIRECTIONAL POT TESTING DEVICE......Page 116
3.1 Model pile......Page 117
4.1 Testing procedure......Page 118
4.3 Typical multi-directional path trajectories......Page 119
REFERENCES......Page 121
2 MICROSCOPIC OBSERVATION OF GRANULAR BEHAVIOR......Page 123
3 METHOD OF TESTING......Page 124
4 OBSERVED DEFORMATION OF SPECIMEN......Page 125
5 MICROSCOPIC STUDIES ON NATURE OF SHEAR BAND......Page 126
6 MOVEMENT AND ROTATION OF PARTICLES WITHIN AND NEAR SHEAR BAND......Page 127
REFERENCES......Page 128
1 INTRODUCTION......Page 129
3 TESTING EQUIPMENT......Page 130
5.1 Effect of sample size......Page 131
5.2 Effect of relative density......Page 132
5.3 Effect of over-consolidation ratio......Page 133
5.4 Elastic deformation parameter......Page 134
REFERENCES......Page 135
1 INTRODUCTION......Page 137
2 LABORATORY TEST EQUIPMENT AND PROCEDURES......Page 138
3 RESULTS......Page 139
REFERENCES......Page 141
2.1 Isothermal equipment......Page 143
2.3 Heating system......Page 144
3.1 Tested material......Page 145
4 CONCLUSION......Page 146
REFERENCES......Page 147
Discussion Session 2:: Characterisation I small and medium strain behaviour, anisotropy, interface, permeability Caractérisation I domaine des petites et moyennes déformations, anisotropie, interface, perméabilité......Page 148
2.1 Aperçu géologique......Page 149
2.3 Caractéristiques des marnes de Tlemcen......Page 150
4.1 Estimation de la pression de gonflement......Page 152
4.2 Estimation de l’amplitude de gonflement......Page 153
5 LOCALISATION ET VARIATION DES PARAMETRES DE GONFLEMENT AU NIVEAU DU GROUPEMENT......Page 154
BIBLIOGRAPHIE......Page 156
2.2 Basic material properties......Page 158
3.1 Gmax from in situ testing......Page 159
3.2 Gmax from laboratory testing......Page 160
5.1 General......Page 161
5.3 Stiffness in the normally consolidated range......Page 162
6.2 Oedometer tests......Page 163
8 CONCLUSIONS......Page 164
REFERENCES......Page 165
2 SOILS......Page 166
2.3 Belp site......Page 167
4.1 CRS-Test......Page 168
4.2 CG-Test......Page 170
5 EXPERIMENTAL RESULTS......Page 171
6 CONCLUSIONS......Page 173
REFERENCES......Page 174
1 INTRODUCTION......Page 175
3.1 Sample preparation and testing equipment......Page 176
3.4 Strain measurement: external vs internal LVDTs......Page 177
5.1 Stiffness reduction with number of cycles......Page 178
5.2 Framework describing the stiffness reduction with number of cycles......Page 179
5.3 Application of the framework for anisotropically consolidated samples......Page 180
5.4 S versus Smod......Page 181
REFERENCES......Page 182
2.1 Experimental setup and test procedure......Page 184
2.3 Distinct element simulation......Page 185
3.1 Macroscopic response......Page 186
3.2 Particle’s kinematics......Page 187
4 EFFECT OF PARTICLE STIFFNESS......Page 188
6 CONCLUSIONS......Page 190
REFERENCES......Page 191
1 INTRODUCTION......Page 192
2.2 Test procedure......Page 193
3.1 Effect of stress conditions on the initial stiffness......Page 195
3.2 Effect of propagating direction of the shear wave......Page 196
3.3 Comparison of laboratory and in-situ tests......Page 197
REFERENCES......Page 199
2 CHARACTERISTICS OF SAMPLES......Page 200
4 EXPERIMENT RESULTS......Page 201
4.3 Comparison of pore diameter distribution at consolidation pressure D =10MPa......Page 204
5 DISCUSSION......Page 205
REFERENCES......Page 207
2.1 Clay samples in Singapore......Page 208
3 TEST RESULTS......Page 209
4.1 Relationship between e and G......Page 211
4.3 The relationship between Su and OCR......Page 212
REFERENCES......Page 213
2 TESTS PERFORMED......Page 215
3 ELASTIC DEFORMATION MODULI BASED ON ISOTROPIC ELASTICITY......Page 217
4.2 Evaluation of Ed by considering effects of creep strain......Page 218
4.3 Stress parameter governing Young’s moduli, Eu and Ed......Page 220
4.4 Interrelationship among G, Eu and Ed......Page 221
5 CONCLUSIONS......Page 222
REFERENCES......Page 223
2 SOIL PHYSICAL PROPERTIES AND EXPERIMENTAL PROCEDURES......Page 224
3 EXPERIMENTAL RESULTS UNDER CYCLIC LOADING......Page 225
4.1 Behaviour under undrained shearing......Page 227
4.2 Behaviour under drained shearing......Page 229
5 CONCLUSIONS......Page 231
REFERENCES......Page 232
1 INTRODUCTION......Page 233
3 EXPERIMENTAL RESULTS......Page 234
4 CONCLUSIONS......Page 238
REFERENCES......Page 239
2.1 Apparatus......Page 240
2.2 Testing material and specimen preparation......Page 241
3.2 Effect of surface roughness......Page 242
3.3 Effect of shear rate on shear and frictional behaviour......Page 243
REFERENCES......Page 246
2 TESTED MATERIALS AND TESTING PROCEDURES......Page 247
3.1 Behavior of mudstone samples during undrained cyclic loading......Page 249
3.2 Small strain Young’s modulus of mudstone samples during undrained cyclic loading......Page 250
3.3 Behavior of silt?sandstone samples during undrained cyclic loading......Page 251
3.5 Maximum deviator stress of two samples during undrained monotonic loading......Page 252
3.6 Behavior during undrained cyclic loading with changing amplitude of cyclic deviator stress......Page 253
4 CONCLUSIONS......Page 254
REFERENCES......Page 255
2 TESTED MATERIAL......Page 256
3 EXPERIMENTAL APPARATUSES AND TESTING PROCEDURES......Page 257
4 TESTING PROGRAM......Page 258
5.1 Reduction of stiffness with shear strain amplitude......Page 259
5.2 Small-strain stiffness......Page 260
5.3 Normalized stiffness and damping at medium and large strain levels......Page 261
5.4 Effect of number of cycles on stiffness and damping......Page 262
REFERENCES......Page 263
2 GEOLOGICAL AND STRUCTURAL CHARACTERISTICS OF THE AREA......Page 265
3 INVESTIGATION PROGRAM AND BASIC SOIL PROPERTIES......Page 266
4.1 General......Page 267
4.2 Young and shear modulus and damping ratio from laboratory tests......Page 268
4.3 Shear modulus from in situ tests......Page 270
5 CONCLUSIONS......Page 271
REFERENCES......Page 272
1 INTRODUCTION......Page 273
2 IIS MODEL......Page 274
3 TEST MATERIAL AND PROCEDURE......Page 275
REFERENCES......Page 279
APPENDIX: DETERMINATION OF INHERENT ANISOTROPIC PROPERTIES......Page 280
1.2 Membrane penetration......Page 282
3 SAMPLE PREPARATION METHOD......Page 283
5.2 Investigation of inherent anisotropy......Page 284
5.3 Investigation of membrane penetration......Page 285
6 DISCUSSION OF RESULTS......Page 286
REFERENCES......Page 287
1 INTRODUCTION......Page 289
3.2 Test procedure......Page 290
4 RESULTS AND DISCUSSIONS......Page 291
REFERENCES......Page 293
1 INTRODUCTION......Page 295
3 RESULTS AND DISCUSSION......Page 296
REFERENCES......Page 299
2 LARGE-SCALE TRUE TRIAXIAL APPARATUS......Page 300
3 TESTED MATERIALS AND TESTING PROGRAM......Page 302
4.1 Toyoura sand......Page 303
4.2 Chiba gravel......Page 305
ACKNOWLEDGEMENTS......Page 306
REFERENCES......Page 307
1 INTRODUCTION......Page 308
2 MICROMECHANICS MODEL......Page 309
4.1 Physical meaning of anisotropy factor alpha......Page 310
4.3 Evaluation of Assumption B......Page 311
5 DISCUSSIONS......Page 312
REFERENCES......Page 314
1 DEFINITION OF STRAIN-RATE PARAMETERS AND FACTORS......Page 315
3 TESTING APPARATUS, SOILS TESTED, AND TESTING PROGRAM......Page 316
4 INTERPRETATION OF TEST RESULTS......Page 318
5 INFLUENCE OF THE SOIL TYPE ON THE STRAIN-RATE EFFECTS......Page 319
6 SUMMARY AND CONCLUSIONS......Page 321
REFERENCES......Page 322
1 INTRODUCTION......Page 323
4.1 Compressibility......Page 324
4.2 Results at small strains......Page 325
4.3 Results at medium strains......Page 326
4.4 Evidence of cyclic behaviour......Page 327
REFERENCES......Page 330
1 INTRODUCTION......Page 331
3 TESTING APPARATUS AND EXPERIMENTAL PROGRAMME......Page 332
4.1 Compressibility......Page 333
4.2 Small strain results......Page 334
4.3 Medium strain results......Page 336
REFERENCES......Page 337
1 INTRODUCTION......Page 339
2.2 Test program......Page 340
4 TEST RESULTS......Page 342
5 SUMMARY AND CONCLUSIONS......Page 345
REFERENCES......Page 346
2 HOLLOW CYLINDER APPARATUS: T4C STADY......Page 347
3 TESTING PROCEDURE......Page 348
5 “DBGS? HYPOELASTIC MODEL......Page 349
6 COMPARISON BETWEEN QUASI-STATIC AND DYNAMIC MODULI......Page 350
7.1 Preamble......Page 351
7.3 Terms?......Page 352
8 CONCLUSION......Page 355
REFERENCES......Page 357
1 GENERAL INTRODUCTION......Page 358
3.1 Material and sample preparation......Page 359
3.4 Viscous behaviour......Page 360
4.1 General formalism......Page 362
4.2 Hypo elasticity for very small strain......Page 363
4.3 Creep results......Page 364
5 CONCLUSION......Page 365
REFERENCES......Page 366
1 INTRODUCTION......Page 367
3 DEPENDENCE OF n PARAMETER ON THE SHEAR STRAIN LEVEL AND NUMBER OF LOADING CYCLES......Page 368
4 INFLUENCE OF N ON STIFFNESS AND DAMPING RATIO......Page 370
REFERENCES......Page 371
1 INTRODUCTION......Page 372
2.2 Polyurethane sample......Page 373
2.3 Bothkennar clay sample......Page 374
3 RESIDUAL SOIL FROM GRANITE IN PORTO......Page 376
REFERENCES......Page 377
2.1 Sample soils......Page 378
2.2 Summary of a direct shear test......Page 379
3 PRESUMPTION OF MAXIMUM SKIN FRICTION RESISTANCE OF SIP AT WEATHERED GRANITE SOIL......Page 380
4.2 The coefficients of proposed shear resistance behavior model......Page 381
REFERENCES......Page 383
1 INTRODUCTION......Page 384
3.1 Conventional properties of recycled aggregate......Page 385
3.3.1 Details of cyclic triaxial testing......Page 386
3.3.2 Resilient modulus and permanent strain......Page 387
4 SUMMARY AND CONCLUSIONS......Page 389
REFERENCES......Page 390
2 TESTED SOILS......Page 391
4.1 Small-strain shear modulus......Page 392
5.1 High-strain shear modulus......Page 394
5.2 High-strain damping ratio......Page 395
REFERENCES......Page 396
1 INTRODUCTION......Page 398
3 TEST RESULTS AND DISCUSSION......Page 399
4 CONCLUSIONS......Page 401
REFERENCES......Page 402
1 INTRODUCTION......Page 403
2 TESTING PROGRAMME......Page 404
3 RESULTS AND DISCUSSION......Page 405
4 CONCLUSIONS......Page 406
REFERENCES......Page 407
Discussion Session 3: Characterisation II large strain behaviour, time effects Caractérisation II grandes déformations, effets du temps......Page 408
1 INTRODUCTION......Page 409
4.1 Experimental setup......Page 410
4.2 Experimental results......Page 411
5.1 Graphical interpretation......Page 412
5.2 Analysis of the friction angle......Page 414
5.4 Choice of a constitutive model......Page 415
REFERENCES......Page 416
2.3 Experimental conditions......Page 417
3.2 Triaxial creep test......Page 418
3.3 Secondary compression in oedometer tests......Page 419
4.1 Viscoplastic flow rule......Page 420
5 CONCLUSIONS......Page 421
REFERENCES......Page 422
2 CONSTITUTIVE MODEL......Page 423
3 SIMULATION OF OEDOMETER TEST......Page 424
3.1 Interpretation of time curves......Page 425
3.2 Influence of scale......Page 426
REFERENCES......Page 427
2 THE SOIL STUDIED......Page 429
4 RESULTS......Page 430
5.2 Deformability analysis......Page 433
6.3 Hardening parameter......Page 434
7 CONCLUSIONS......Page 435
REFERENCES......Page 436
1 INTRODUCTION......Page 437
2 EXPERIMENTAL PROGRAMME AND TESTING APPARATUS......Page 438
2.2 Intact soil samples......Page 439
3.1 Basic formulations......Page 440
3.3 Soil dilation......Page 441
3.4 Flow rule......Page 442
4 CONCLUSIONS......Page 443
SYMBOLS......Page 444
2 NEW IN-SITU DIRECT SHEAR TEST......Page 446
3 STRESS?DILATANCY RELATIONSHIP OF VARIOUS GRANULAR MATERIALS......Page 447
REFERENCES......Page 449
2.1 Uniqueness theorem ? work increment......Page 450
3.2 Dilative specimen subjected to drained shear standard case......Page 451
3.4 Dilative specimen subjected to undrained shear ? cavitation......Page 452
3.5 Alignment of platy particles......Page 453
3.7 Uunsaturated soil......Page 454
3.9 Heterogeneous soil......Page 455
4 DISCUSSION ? IMPLICATIONS......Page 456
REFERENCES......Page 457
2.1 Fly ashes tested......Page 459
3.1 Effects of chemical substances......Page 460
3.2 Effects of confining pressure......Page 461
REFERENCES......Page 462
1 INTRODUCTION......Page 463
3.1 Influence of thermal expansion......Page 464
3.2.2 Measurement of the density of soil particles......Page 465
4.1 Equipment......Page 466
4.3.1 Temperatures in the soil specimen......Page 467
4.3.3 Behavior under varying temperature......Page 468
5.1 Formulation......Page 469
5.2 Results of calculation......Page 470
REFERENCES......Page 471
1 INTRODUCTION......Page 472
3 SOIL CHARACTERIZATION......Page 473
4 TRIAXIAL TESTS RESULTS......Page 475
5.1 Volume change behaviour and yield surface characterisation......Page 476
6 CONCLUSIONS......Page 477
REFERENCES......Page 478
1 INTRODUCTION......Page 479
2 EXPERIMENTAL RESULTS......Page 480
3.1 Hardening......Page 482
3.2 Flow......Page 484
4 CONCLUDING REMARKS......Page 485
REFERENCES......Page 486
2 SHEAR PROPERTIES AT RESIDUAL STATE......Page 487
4.1 Classification of friction......Page 488
4.4 Lubrication state at friction surface......Page 489
6 CONCLUDING REMARKS......Page 491
REFERENCES......Page 492
2 TEST EQUIPMENT AND LOADING CONDITION......Page 493
3.1 Liquefaction strength......Page 495
4 CONCLUDING REMARKS......Page 498
REFERENCES......Page 499
2 SAMPLE PREPARATION AND PHYSICAL PROPERTIES OF SANDS TESTED......Page 500
4.1 CD test results......Page 502
Cyclic undrained shear deformation characteristics of V and H-specimen......Page 503
5 LABORATORY TESTS FOR INVESTIGATING THE EFFECT OF STRESS HISTORY ON ANISOTROPY IN UNDRAINED CYCLIC SHEAR BEHAVIOR OF SAND......Page 504
5.2 Liquefaction test results of reconstituted specimens......Page 505
REFERENCES......Page 506
1 INTRODUCTION......Page 508
3 LABORATORY TESTS......Page 509
4 COMPARISON BETWEEN UNDISTURBED AND RECONSTITUTED SAMPLES......Page 510
5 COMPARISON BETWEEN UNDRAINED MONOTONIC AND CYCLIC TESTS......Page 512
REFERENCES......Page 514
2 SAMPLE......Page 516
3 OEDOMETER TEST......Page 517
4 TRIAXIAL TEST......Page 518
REFERENCES......Page 524
2.1.1 Composition chimique et minéralogique du ciment classe G......Page 526
5.1 Effet du sel......Page 527
5.2 Effet de la bentonite......Page 528
6.1 Effet de la bentonite sur les paramètres rhéologiques......Page 529
8 CONCLUSION......Page 530
RÉFÉRENCES BIBLIOGRAPHIQUES......Page 531
2.2 Cadre géologique des secteurs......Page 532
3.4 Granulométrie des différentes moraines......Page 533
3.5 Paramètres mécaniques des différentes moraines......Page 534
4.2 Propriétés mécaniques......Page 535
5.2 Vérification de la loi expérimentale......Page 536
REFERENCES......Page 537
1 INTRODUCTION......Page 539
2 TEST METHOD......Page 540
3 TEST RESULTS AND DISCUSSIONS......Page 541
4.1 Linear model......Page 545
4.2 TESRA model......Page 546
REFERENCES......Page 547
2 TESTING METHOD......Page 549
3 AGEING AND LOADING RATE EFFECTS......Page 550
4.1 Ageing effects......Page 551
4.2 Loading rate effects......Page 553
4.3 Coupling between ageing and loading rate effects......Page 555
5 CONCLUSIONS......Page 556
REFERENCES......Page 557
1 INTRODUCTION......Page 558
2.1 Test specimens......Page 559
3 TEST RESULTS......Page 560
4 MODEL SIMULATION......Page 562
REFERENCES......Page 566
1 INTRODUCTION......Page 567
3.1 Residual compression by sustained and cyclic loading at preloading conditions......Page 568
3.2 Behaviour during creep and cyclic loading at prestressing state......Page 570
3.3 Displacement-controlled loading to evaluate the material viscous property......Page 571
5 CONCLUSIONS......Page 573
REFERENCES......Page 574
1 INTRODUCTION......Page 575
2 A BRIEF SUMMARY OF PREVIOUS WORK......Page 576
3 TEST METHOD......Page 578
4.2 Global stress?average strain behaviour in PSC......Page 579
4.3 Deformation characteristics of shear band......Page 581
REFERENCES......Page 583
1 INTRODUCTION......Page 585
2 TEST METHOD......Page 586
3.2 Global stress?strain behaviour......Page 587
4 MODIFIED NEWMARK METHOD......Page 591
5 CONCLUSIONS......Page 593
2 TEST METHOD......Page 595
3 TEST RESULTS......Page 596
4.1 Non-linear three-component model......Page 599
4.2 Simulation......Page 600
REFERENCES......Page 602
1 INTRODUCTION......Page 604
2 TEST METHOD......Page 605
3 TEST RESULTS......Page 606
4 LABORATORY AND FIELD BEHAVIOURS......Page 610
REFERENCES......Page 611
2.1 Materials......Page 613
2.2 Specimen preparation......Page 614
3.2 Strength characteristics......Page 615
4 EFFECT OF MOLDING WATER CONTENT AND GRADATION ON STIFFNESS......Page 617
REFERENCES......Page 618
1 INTRODUCTION......Page 620
3 TEST RESULTS AND DICUSSIONS......Page 621
4 MODELLING AND SIMULATION......Page 623
REFERENCES......Page 627
2.1 Triaxial cell......Page 629
3.3 Saturation and consolidation......Page 630
4.2 Drained triaxial compression tests......Page 631
5.1 Angle of friction and failure surface......Page 632
5.2 Dilatancy......Page 634
5.3 Critical state......Page 635
REFERENCES......Page 636
2 CROSS-HOLE TESTS CH......Page 637
Open tube sampler......Page 638
3.2 Triaxial test results......Page 639
5 DISCUSSION OF THE RESULTS......Page 640
REFERENCES......Page 642
2.1 Experimental device and procedure......Page 643
2.2.2 Tests program......Page 644
3.3 Controlled stress path tests......Page 645
4.1 Determination of Vermeer model parameters......Page 646
4.3 Modelling of the controlled stress path tests......Page 647
4.4 Fitting of the parameters on the controlled stress path tests......Page 648
REFERENCES......Page 649
1 INTRODUCTION......Page 650
2 CONCEPT FOR THE EVALUATION OF STRENGTH BEHAVIOR......Page 651
3.2 Shear characteristics......Page 652
REFERENCES......Page 654
1 INTRODUCTION......Page 655
2.1 Gravel type and specimen preparation......Page 656
2.2 Apparatus......Page 657
3.1 Strength characteristic at different compacted dry densities......Page 658
3.2 Effects of moulding water content......Page 662
3.3 Mohr-Coulomb strength parameters......Page 663
REFERENCES......Page 665
2 THE SOILS......Page 666
4 STRESS?STRAIN BEHAVIOUR......Page 667
6 YIELD BEHAVIOUR......Page 668
REFERENCES......Page 669
2.1 Basic characteristics......Page 671
2.2 Single particle crushing......Page 672
3.1 Compression behaviour......Page 673
3.3 Relation with crushing strength......Page 674
REFERENCES......Page 675
2.1 Samples......Page 676
2.2 Particle strength......Page 677
3.1 Stress strain behaviour......Page 678
3.3 Modulus of deformation......Page 680
3.4 Steady state......Page 681
REFERENCES......Page 682
2.1 Profiles of sands......Page 683
3.1 Effect of loading condition on splitting behaviour......Page 684
3.2 Influence of physical properties of sand on splitting strength......Page 685
4 ONE-DIMENSIONAL COMPRESSION BEHAVIOUR OF BONDED MATERIALS......Page 686
REFERENCES......Page 688
1 INTRODUCTION......Page 689
4 UNDRAINED MONOTONIC SHEAR BEHAVIOUR......Page 690
5 CYCLIC SHEAR BEHAVIOUR......Page 692
REFERENCES......Page 695
2 TESTING APPARATUS, MATERIALS, AND EXPERIMENTAL PROCEDURES......Page 696
4.1 Drained compression cycle......Page 697
4.1.1 Undrained compression......Page 698
4.2 Isotropic overconsolidation......Page 699
5 DISCUSSION OF RESULTS......Page 701
REFERENCES......Page 703
2 EXPERIMENTAL METHODS AND SAND......Page 704
3.1 Stress?strain curve pattern and failure rift pattern......Page 705
3.2 Dilatancy index?strain curve pattern......Page 706
4 CONCLUSIONS......Page 708
REFERENCES......Page 709
2.1 Tested materials and compaction procedures......Page 710
2.2 Stress paths followed: fabrication process, isotropic loading and wetting/drying cycle......Page 711
3.1 Test results on Boom clay ? interpretation of results......Page 712
4 SUMMARY AND CONCLUSIONS......Page 715
REFERENCES......Page 716
1 INTRODUCTION......Page 717
2 EXPERIMENTAL TESTS ON NATURAL LOESS......Page 718
3 CONSIDERATIONS ON A COMPUTATIONAL MODEL FOR LOESS SOILS......Page 720
REFERENCES......Page 721
1 INTRODUCTION......Page 722
3 BASIC PROPERTIES AND TESTING PROGRAM......Page 723
4.1 The stress?strain characteristics......Page 724
4.2 Non-linearity and its causes......Page 725
5 EFFECTS OF DIRECTIONS OF TOTAL STRESS PATH ON UNDRAINED STRESS?STRAIN?STRENGTH CHARACTERISTICS......Page 726
5.3 Effects of direction of TSP and normalized effective stress envelopes NESE......Page 727
REFERENCES......Page 729
2 DETAILS OF TESTS......Page 731
3 DRAINED TRIAXIAL COMPRESSION TEST......Page 732
5 ANALYSIS OF RESULTS......Page 733
6 CONCLUSIONS......Page 734
REFERENCES......Page 735
2 PROCEDURES......Page 736
3.1 Load rate effect......Page 737
3.3 Particle breakage......Page 738
3.5 Fractal distribution analysis......Page 740
REFERENCES......Page 741
2.1 Sample fabrication......Page 742
2.2 Test procedure......Page 743
3.3 Cement content......Page 744
4.2 Effect of cement content on permeability......Page 746
REFERENCES......Page 747
2.1 Sand and specimen preparation......Page 748
2.4 High-speed camera and film digitizer......Page 749
3.3 Recorded load data......Page 750
4.1 Effect of strain rate on the stress?strain behavior......Page 751
4.2 Shear band inclination angles......Page 752
REFERENCES......Page 753
Discussion Session 4: Integrated ground behaviour prediction by numerical methods of physical model or field behaviour Comportement des ouvrages prédiction par méthodes numériques du comportement d’ouvrages ou de modèles physiques......Page 754
2 TESTING APPARATUS AND FE ANALYSIS......Page 755
3 EXPERIMENTAL AND NUMERICAL RESULTS......Page 757
REFERENCES......Page 760
2 DEPTH DISTRIBUTION OF VERTICAL STRAINS GENERATED IN DAM FOUNDATION......Page 761
3.2 Numerical simulation of PLTs......Page 763
4 NUMERICAL SIMULATION DUE TO FILL PLACEMENT OF EMBANKMENT DAMS......Page 764
5 PREDICTION OF DEFORMATION BY LINEAR ELASTIC ANALYSIS......Page 767
6 RATIONAL DESIGN METHOD OF DEFORMATION OF SOFT ROCK FOUNDATIONS......Page 768
7 CONCLUSIONS......Page 769
REFERENCES......Page 770
2 FINITE ELEMENT ANALYSIS......Page 771
4 TEST PROCEDURES......Page 772
6.1 Cyclic central loading test CCL......Page 773
6.2 Cyclic alternate loading test CAL......Page 775
6.3 Analysis for CAL based on reduction in internal friction angle......Page 776
REFERENCES......Page 777
1 INTRODUCTION......Page 778
2.1 Apparatus and test procedure......Page 779
2.2 Tests results......Page 780
3.1 Anisotropy of ground......Page 781
4 MODIFIED METHOD FOR COMPUTING ULTIMATE BEARING CAPACITY......Page 782
6 CONCLUSIONS......Page 784
REFERENCES......Page 785
2 MODEL TEST......Page 786
3 TEST RESULTS......Page 787
4 CHARACTERISTICS OF SAND......Page 788
5 SIMULATION OF THE LOADING TEST......Page 789
6 THE MECHANISM OF BEARING CAPACITY OF NODE ALONG PILE......Page 790
8 CONCLUSION......Page 791
REFERENCES......Page 792
2 LABORATORY TESTS......Page 793
3 IN-SITU MECHANICAL TESTS......Page 794
4 INDUCED SLOPE FAILURE TEST......Page 796
4.1 Tested slope #1 with thick mudstone and sandstone......Page 797
4.2 Tested slope #2 with alternation of thin mudstone/sandstone......Page 798
RERERENCES......Page 799
2 OBJECTIVES OF RESEARCH......Page 800
3.2 Test implements......Page 801
4.1 Difference in time history response......Page 803
4.2 Dynamic response properties of railroad ballast......Page 805
4.3 Damage of railroad ballast......Page 806
REFERENCES......Page 807
2.1 Triaxial tests......Page 808
2.3 Comparison between the test results......Page 809
3 RELATIONSHIP BETWEEN FIELD AND LABORATORY STIFFNESS NON-LINEARITY......Page 810
4 ASSESSMENT OF THE PERFORMANCE OF A SHALLOW FOUNDATION......Page 813
REFERENCES......Page 814
2 THE MODEL USED......Page 815
3 LABORATORY EVIDENCE AND ONE DIMENSIONAL SIMULATION......Page 816
4 TWO DIMENSIONAL EFFECTS OF TRAVELLING WAVES......Page 817
5 CONCLUSIONS......Page 819
REFERENCES......Page 820
2.1 Test apparatus......Page 821
2.3 Test results......Page 822
3.2 Three-dimensional consolidation theory......Page 824
3.3 Application to vertical drain system......Page 825
3.4 Analysis results......Page 826
REFERENCES......Page 828
1 INTRODUCTION......Page 830
2.1 Formulation of TESRA model......Page 831
2.3 Pseudo-algorithm......Page 832
3.2 Material model......Page 833
4.2 FEM simulation......Page 834
5 CONCLUSIONS......Page 836
REFERENCES......Page 837
1.2 Foundation analyses in practice......Page 839
2.1 Soil stiffness......Page 840
2.2 Preconsolidation stresses......Page 841
3.1 Class A predictions......Page 842
REFERENCES......Page 843
2 HORIZONTAL LOADING TESTS......Page 845
3 METHODOLOGY......Page 846
3.2 Governing equation for the underground section......Page 847
5 RESULTS AND DISCUSSION......Page 848
REFERENCES......Page 851
2 MODELLING OF PILES IN CENTRIFUGE......Page 852
3.2 Soil model......Page 853
4.1 Procedure of construction and validation......Page 854
4.2 Initial lateral reaction modulus......Page 855
5 COMPARATIVE STUDY OF PREDICTION OF CURRENT METHODS......Page 856
6 CONCLUSIONS......Page 857
REFERENCES......Page 858
1 INTRODUCTION......Page 859
2.2 Effect of measured pore pressure and identification method......Page 860
3 ANALYSIS OF HYPOTHETICAL GROUND......Page 861
4.2 Results of analysis......Page 863
5.1 Model of analysis......Page 864
REFERENCES......Page 866
1 INTRODUCTION......Page 867
2.2 Simplified 3-D formulation......Page 868
3.1 DSM wall......Page 869
3.3 Ground response......Page 870
3.4 Wall response......Page 871
5 CONCLUSIONS......Page 873
REFERENCES......Page 874
1 INTRODUCTION......Page 875
2.2 Cylindrical domain......Page 876
3.2 Bifurcation analysis......Page 877
5 RECTANGULAR SPECIMENS: EXPERIMENT......Page 878
5.2 Classification of deformation patterns......Page 879
6.2 Bifurcation and deformation behaviors......Page 881
HYPERELASTO-PLASTIC CONSTITUTIVE RELATION......Page 882
2 MATERIAL MODEL FOR THAWING SOIL......Page 884
5.1 Saturated triaxial tests: drained shear result for Lebanon Sand......Page 885
5.2 Saturated triaxial tests: undrained shear result for Lebanon Sand......Page 886
5.4 Triaxial tests at specific water content......Page 887
7.1 Vehicle wheel rolling on thawing soil......Page 888
7.2.1 Pavement and sirfield layering during thaw......Page 889
REFERENCES......Page 890
1 INTRODUCTION......Page 892
3 MATERIAL CONSTITUTIVE MODEL......Page 893
4 INTEGRATION OF THE CONSTITUTIVE RELATIONS......Page 895
5.1 3D-simulation......Page 896
5.2 Comparison of results from square and strip footing simulations......Page 897
6 CONCLUSIONS......Page 898
REFERENCES......Page 899
2 STATEMENT OF THE PROBLEM......Page 900
4.2 Failure criteria......Page 901
5 NUMERICAL MODELLING......Page 902
6.1 Rise side slope......Page 903
6.3 Effect of major weak plane......Page 904
REFERENCES......Page 907
2 L’ESSAI DE DÉFORMABILITÉ DES SOLS: MATÉRIEL EXPÉRIMENTAL ET EXPLOITATION......Page 908
2.2.1 Essai de chargement monotone......Page 909
2.2.3 Implantation des différents essais......Page 910
3.1 Les essais de chargement monotone......Page 911
3.2 Les essais de chargement cycliques......Page 913
5 CONCLUSION ET PERSPECTIVES......Page 914
RÉFÉRENCES......Page 915
1 INTRODUCTION......Page 916
2.2 Model calibration......Page 917
3.1 General......Page 918
5 CONCLUSION......Page 919
REFERENCES......Page 920
2 MATERIAL MODEL......Page 921
3.1 Return mapping scheme......Page 922
4 MODEL EXPERIMENTS......Page 923
5.2 Maximum shear strain distribution......Page 924
REFERENCES......Page 925
2.1 Bearing capacity......Page 926
3.1 Soil characteristics......Page 927
3.3 Granular pile installation......Page 928
4.1 Loading test result......Page 929
4.2 Result of consolidation tests......Page 930
5.1 Bearing capacity......Page 931
5.2 Consolidation characteristics......Page 932
REFERENCES......Page 933
2 STATION BOX EXCAVATION AND INSTRUMENTATION......Page 934
3 SOIL PROFILE, SOIL MODELS AND MODEL PARAMETERS......Page 935
4 FINITE ELEMENT ANALYSIS......Page 937
5 RESULTS OF THE ANALYSES......Page 938
REFERENCES......Page 940
3 SCRAP TIRE AS GEOMATERIAL......Page 941
4.3 Testing......Page 942
5.4 Aqueous foam in the mix......Page 943
5.5 RHA as OPC replacement......Page 944
REFERENCES......Page 945
2 SUGGESTED FIELD WORK......Page 947
3 THE LOCAL MODEL......Page 948
4 THE GLOBAL MODEL......Page 949
REFERENCES......Page 950
Discussion Session 5: Modelling rheological, mathematical, mechanical models Modélisation modèles rhéologiques, mathématiques, mécaniques......Page 951
1 INTRODUCTION......Page 952
3 DATABASE......Page 953
4 MODEL DEVELOPING......Page 954
6 CONCLUSION......Page 955
REFERENCES......Page 957
1 INTRODUCTION......Page 958
2.2 Thermo-mechanical modelling......Page 959
2.3 Thermo-hydro-mechanical modelling......Page 960
3.1 Studied soil......Page 961
3.3 Experimental process......Page 962
4.2 Yield surface evolution in the unsaturated conditions......Page 963
4.5 Results interpretation......Page 964
REFERENCES......Page 965
1 INTRODUCTION......Page 967
3 A NON-LINEAR ELASTIC MODEL FOR GRANULAR MATERIALS......Page 968
4.1 Problem definition......Page 969
4.3 Determination of the residual stress......Page 970
5 FORMULATION OF A CYCLIC CONSTITUTIVE LAW......Page 971
6 NUMERICAL ALGORITHM......Page 972
7 RESULTS AND COMMENTS......Page 973
REFERENCES......Page 974
2.2 Plasticity: isotropic mechanism......Page 975
4 CORRELATIONS OF PARAMETERS WITH PHYSICAL PROPERTIES OF SANDS......Page 977
4.2 Plasticity......Page 978
5 VALIDATION OF THE PROPOSED MODEL......Page 979
6 EXTENSION TO THE CYCLIC BEHAVIOR OF SANDS......Page 980
REFERENCES......Page 981
1 INTRODUCTION......Page 983
2.1 The bifurcation condition......Page 984
3.1 Analysis model and conditions......Page 985
3.3 Post-bifurcation behavior......Page 986
4.2 The criterion for shear band mode bifurcation......Page 987
4.3 Finite element method for shear band modes......Page 988
5 ANALYSIS OF SHEAR BAND FORMATION......Page 989
REFERENCES......Page 990
2 DESCRIPTION OF THE MODEL......Page 991
2.1.3 Deviatoric plastic mechanism......Page 992
2.2 Viscous hardening with a bounding surface......Page 993
3.1 Presentation of the case studied......Page 994
3.2 Model parameters......Page 995
3.3 Plane strain calculations......Page 996
3.4 Axisymmetric calculation......Page 997
REFERENCES......Page 998
2 SIMPLIFIED METHOD PRINCIPLES......Page 999
3 THE MODEL PARAMETERS IDENTIFICATION......Page 1001
5 CONCLUSION......Page 1003
REFERENCES......Page 1004
2 UNIQUE STRAIN-DEPENDENT SHEAR MODULUS CURVE FOR SOIL......Page 1005
4 MODEL PARAMETERS FOR SANDS......Page 1007
6 CONCLUSIONS......Page 1008
REFERENCES......Page 1009
1 INTRODUCTION......Page 1010
2.2 Fractal dimension of grain gradations......Page 1011
2.3 Cluster dimension of grain distribution......Page 1012
3 EXPERIMENTAL PROGRAMS......Page 1013
4.1 Grain form and size......Page 1014
4.4 Cluster dimension and frictional angle......Page 1015
REFERENCES......Page 1017
2.1 Grain-level mechanics......Page 1018
3.1 Preparation, initial states, procedures......Page 1019
3.2 Stress?strain curves and macroscopic limit......Page 1020
3.3 Role of parameters zeta, gamma, kappa......Page 1021
4 DIFFERENT ORIGINS OF STRAIN......Page 1022
5 COMPARISONS WITH EXPERIMENTS......Page 1024
REFERENCES......Page 1025
1 INTRODUCTION......Page 1026
2.3 Unified formulation......Page 1027
3.1 Triaxial variables......Page 1028
3.3 Incremental response......Page 1029
4.2 Tunnel excavation......Page 1030
5 CONCLUSIONS......Page 1031
REFERENCES......Page 1032
2.1 Test procedure......Page 1034
2.2 Test results and discussion......Page 1035
3.2 Test results and discussion......Page 1038
4 CONCLUSIONS......Page 1040
REFERENCES......Page 1041
2.1 Partially-fully saturated coupled analysis......Page 1042
3 NUMERICAL CONDITIONS......Page 1044
4 NUMERICAL RESULTS......Page 1045
REFERENCES......Page 1047
2.1 Test apparatus......Page 1049
2.3 Stress-path behavior in strain-path test......Page 1050
2.4 Relationship between principal stress and strain ratios......Page 1051
3.2 Change of equivalent linear secant Poisson’s ratio......Page 1052
4.2 Simulation of conventional drained compression tests......Page 1053
REFERENCES......Page 1055
2.1 Bounding surface......Page 1056
2.5.1 Hardening modulus at image point, Hj......Page 1057
2.5.2 Hardening modulus at stress point, H......Page 1058
3 GENERALISED FORMULATION......Page 1059
5 VALIDATION OF CASM-B......Page 1060
6 APPLICATION OF CASM-B......Page 1061
REFERENCES......Page 1063
2 ANISOTROPIC HARDENING CONSTITUTIVE MODEL......Page 1064
3 MATHEMATICAL FORMULATION......Page 1065
5 UNDISTURBED WEATHERED SOILS UNDER NATURAL WATER CONTENT......Page 1066
6 REMOLDED WEATHERED SOILS UNDER SATURATED CONDITIONS......Page 1068
APPENDIX: HARDENING FUNCTIONS......Page 1070
1 INTRODUCTION......Page 1072
3 ANALYSIS OF PSC TEST DATA OF TOYOURA SAND......Page 1073
4 ENERGY BASED STESS PATH-INDEPENDENT HARDENING FUNCTIONS FOR SAND......Page 1075
REFERENCES......Page 1078
1 INTRODUCTION......Page 1080
2 DEFINITIONS OF LOADING RATE EFFECT AND AGEING EFFECT......Page 1081
3 THREE-COMPONENT MODEL......Page 1082
4.1 Modifications......Page 1084
REFERENCES......Page 1087
1 INTRODUCTION......Page 1089
2.2 A Generalized Plasticity model for sands......Page 1090
3 THE SOILS OF THE VENICE LAGOON......Page 1092
4 CALIBRATION OF MODEL PARAMETERS......Page 1094
REFERENCES......Page 1096
2.1 Material idealisation of the SCC model......Page 1098
2.2 Constitutive equations......Page 1099
2.3 Softening behaviour......Page 1100
3.1 Compression behaviour of an artificially cemented clay......Page 1101
4 CONCLUSION......Page 1102
REFERENCES......Page 1103
1 INTRODUCTION......Page 1104
2 PURE TRIAXIAL COMPRESSION......Page 1105
3. PURE TRIAXIAL EXTENSION......Page 1107
4 THE PRINCIPLE OF TENSION CUTOFF......Page 1108
REFERENCES......Page 1109
1 INTRODUCTION......Page 1110
2.2 Stability condition of elliptic microstructure......Page 1111
3 NON-LINEAR ANALYSIS WITH ELLIPTIC MICROSTRUCUTRE ? ELLIPTIC MICROSTRUTURE MODEL......Page 1112
4 ANALYSIS RESULTS AND DISCUSSIONS......Page 1113
5 CONCLUSIONS......Page 1115
REFERENCES......Page 1116
2.1 Presentation of the numerical codes......Page 1117
2.4 Presentation of the samples......Page 1118
2.5 Comparison of initial states......Page 1119
2.6 Comparison of shear behavior......Page 1120
3.2 Effect on the initial state......Page 1121
3.3 Effect on the global behavior......Page 1123
REFERENCES......Page 1124
2 ELASTOPLASTIC MODEL......Page 1125
3 DETERMINATION OF MODEL PARAMETERS......Page 1126
3.1.4 Determination of initial state parameters......Page 1127
4.1 Laboratory test paths......Page 1128
5 SBPT SIMULATION IN CALIBRATION CHAMBER......Page 1129
REFERENCES......Page 1130
1 INTRODUCTION......Page 1132
2 MODEL DESCRIPTION......Page 1133
3 EVALUATION OF THE CAPABILITY OF THE MODEL......Page 1134
3.2 Extension tests......Page 1135
3.3 Unload/reload paths......Page 1137
REFERENCES......Page 1139
2.1 Hollow cylinder apparatus “T4CStaDy?......Page 1141
2.2 Creep periods’ observation......Page 1142
2.3 Other observations of viscous behaviour......Page 1143
3.1 General formalism......Page 1144
3.2 1D “Viscous evanescent? model......Page 1145
4.2 First determination of parameters eta0......Page 1146
4.3 Influence of integral term of “viscous evanescent? model for creep period......Page 1147
5 3D GENERALISATION......Page 1148
REFERENCES......Page 1149
1 INTRODUCTION......Page 1150
3 HYPOPLASTIC MODEL IN P?Q SPACE......Page 1151
4 DILATANCY IN HYPOPLASTICITY......Page 1152
5 INCREASED SHEAR STIFFNESS......Page 1153
APPENDIX 1. NOTATION......Page 1154
REFERENCES......Page 1155
1 INTRODUCTION......Page 1157
2 REVIEW OF KINEMATIC HOMOGENIZATION APPROACHES......Page 1158
3.2 Proposed method of interpolation......Page 1159
3.3 Validation......Page 1160
4.1 Comparison of local strain values......Page 1161
REFERENCES......Page 1162
2 CONSTITUTIVE MODEL......Page 1164
3 NUMERICAL RESULTS......Page 1166
REFERENCES......Page 1168
2.1 Plane wave propagation and phase velocity......Page 1170
3.1 General......Page 1171
3.2 Elastic symmetries in soils......Page 1172
4.1 Thomsem parameters......Page 1173
4.2 Measured anisotropy in soils......Page 1174
6 CONCLUSION......Page 1175
REFERENCES......Page 1176
2.1 Basic properties of the simulation model......Page 1177
2.3 Limitations of a 2D simulation model......Page 1178
3 SIMULATION TEST SERIES......Page 1179
4.1 Effect of stress and strain level......Page 1180
4.2 Effect of density......Page 1181
4.4 Effect of surface roughness......Page 1182
REFERENCES......Page 1183
2 TEST PROGRAM......Page 1184
3.1 Case 1?4, without initial shear stress......Page 1185
3.3 Case 7?10, with large initial shear stress......Page 1187
4.1 The rules consist of a simple model......Page 1188
4.2 Simulation......Page 1189
REFERENCES......Page 1190
2 MACROSCOPIC SCALE......Page 1191
Failure criterion......Page 1192
Shear tests at a constant normal relative displacement......Page 1193
5 DAMAGE ANALYSIS......Page 1194
Transient state......Page 1195
REFERENCES......Page 1196
2.2 Geometrical and mechanical description of the soil......Page 1197
2.4 Influence of the topography of the surface......Page 1198
3.2.1 Mathematic consequences......Page 1199
4 CONCLUDING REMARKS......Page 1200
REFERENCES......Page 1201
1 INTRODUCTION......Page 1202
2.1 Definition and conditions......Page 1203
2.4 Abou-Bekr model......Page 1204
3.1 Assumptions and definitions......Page 1205
Elastic behavior......Page 1206
4.3 Loret & Khalili model......Page 1207
4.5 General remarks......Page 1208
REFERENCES......Page 1209
Discussion Session 6: Case history and field or physical model measurements Expériences tirées de la pratique et mesures sur modèles réduits ou ouvrages......Page 1210
2.1.1 Theory......Page 1211
2.1.4 Utilization of method......Page 1212
3.2.2 Predictions after 1 year......Page 1213
3.2.3 Estimations at different observation times......Page 1214
3.4 Variable surface load......Page 1215
REFERENCES......Page 1216
2.1 Model tests on assemblies of aluminum rods......Page 1218
2.2 Model tests on crushed stones......Page 1219
2.3 Prototype tests on real ballast foundation......Page 1220
3 APPLICATION OF THE REINFORCEMENT METHOD BY SOILBAGS IN A LOCAL JAPAN RAILWAY LINE......Page 1221
REFERENCES......Page 1223
2.1 Outline of site investigation......Page 1224
2.3 Identification of shear wave velocity of soil by inversion analysis......Page 1225
3.1 Features of the results in HLSST......Page 1226
3.3 Modelling the azimuth dependency of shear wave velocity by an orthotropic elastic body......Page 1227
3.6 Simulation analyses of the forced vibration tests and earthquake response......Page 1228
REFERENCES......Page 1229
2.2 Relationship between tilting angle rate and time to failure......Page 1230
3.2 Size effect of slope failure......Page 1231
5 DISCUSSION......Page 1232
REFERENCES......Page 1233
2 TEST APPARATUS......Page 1234
3.3 Definitions of deformation......Page 1235
4.1 Static loading test SCL and SEL......Page 1236
4.2 Cyclic loading test CCL and CEL......Page 1239
4.3 Evaluation of failure envelope......Page 1240
REFERENCES......Page 1241
2.1 Source and spatial configuration of receivers......Page 1242
3.2 Coupled versus uncoupled procedure......Page 1243
4 RESULTS AT A MUD ISLAND B SITE......Page 1245
REFERENCES......Page 1248
2 REVIEW OF PREVIOUS STUDIES OF AGING EFFECT ON LIQUEFACTION STRENGTH......Page 1250
3 TESTS ON UNDISTURBED AND RECONSTITUTED SAMPLES TAKEN IN TOKYO......Page 1251
4 SUMMARY OF AGING EFFECT ON LIQUEFACTION STRENGTH......Page 1253
5 AGING EFFECT ON POST-LIQUEFACTION BEHAVIOR......Page 1254
REFERENCES......Page 1255
2 GROUND STIFFNESS EQUATION......Page 1256
3.1.1 Overview......Page 1258
3.1.4 Analysis and measurement......Page 1259
3.2.2 Analysis method......Page 1261
3.2.3 Analysis and measurement......Page 1263
REFERENCES......Page 1264
1 INTRODUCTION......Page 1265
2.2 Measurement of dispersion curve......Page 1266
3.1 Multi-station spectral analysis of surface wave MSASW......Page 1267
3.2 Effects of higher modes......Page 1268
4.1 Effects of survey line parameters......Page 1271
5 CONCLUSION......Page 1272
REFERENCES......Page 1273
1 INTRODUCTION......Page 1274
3.1 Calibration model......Page 1275
3.3.2 Drain excavation Case 4B......Page 1276
4.3.1 Effect of tunnel excavation......Page 1277
4.3.3 Effect of train loading......Page 1278
5 CONCLUSIONS......Page 1279
REFERENCE......Page 1280
1 INTRODUCTION......Page 1281
2.1 Construction, preloading, and prestressing......Page 1282
2.2 Observed behaviours......Page 1283
3.1 Loading procedures......Page 1286
3.2 Observed behaviours......Page 1287
4 CONCLUSIONS......Page 1288
REFERENCES......Page 1289
1 INTRODUCTION......Page 1290
3.2 Laboratory tests......Page 1293
4.1 Total density, water content and SPT N values......Page 1294
4.4 One-dimensional compression yield pressure py......Page 1295
5 COMPRESSIBILITY OF CLAY......Page 1296
6 CONCLUSIONS......Page 1297
REFERENCES......Page 1298
2.1 Test location......Page 1299
2.3 Speed and passage location of loading vehicle......Page 1300
3.2 Earth pressure and strain pulses......Page 1301
3.4 Earth pressure and strain versus vehicle’s passage......Page 1303
4 CONCLUSIONS......Page 1304
REFERENCE......Page 1305
2.1 Centrifuge model configuration......Page 1306
2.2 Shaking events and data sets......Page 1308
3 BACK CALCULATION OF SHEAR STRESS?STRAIN HISTORIES......Page 1309
4.1 Finite Element formulation......Page 1310
4.2.1 Model calibration......Page 1311
REFERENCES......Page 1312
1 INTRODUCTION......Page 1314
2.1 Monitoring of settlements, pore pressures and vertical total stresses......Page 1315
2.2 Seismic monitoring......Page 1316
3.2 Back-analysis results......Page 1317
APPENDIX......Page 1319
2 STRUCTURAL, HYDROGEOLOGICAL AND GEOTECHNICAL CONDITIONS ANALYSIS......Page 1320
3 GEOTECHNICAL TEST RESULTS......Page 1321
4 CONCLUSIONS......Page 1323
1 INTRODUCTION......Page 1324
3 IDENTIFICATION OF GROUND PROPERTIES USING VERTICAL ARRAY SEISMIC RECORDS......Page 1326
4 INFLUENCE OF GROUND ANISOTROPY AND NONLINEARITY ON STRUCTURE BEHAVIORS DURING EARTHQUAKES......Page 1327
5 EVALUATION OF SITE SOIL NONLINEAR PROPERTIES USING VERTICAL ARRAY SEISMIC RECORDS......Page 1329
REFERENCES......Page 1334
1 GENERAL INSTRUCTIONS......Page 1336
3.1 Field test......Page 1337
4 CONCLUSIONS......Page 1340
REFERENCES......Page 1341
3 EXPERIMENTAL INVESTIGATION......Page 1342
5.1.2 Group piles embedded in virgin clay......Page 1343
5.3 Efficiency of pile group......Page 1344
5.4.2 Group piles embedded in virgin clay and stabilised clay......Page 1345
REFERENCES......Page 1346