ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Deep Learning: A Practitioner’s Approach

دانلود کتاب یادگیری عمیق: رویکرد یک پزشک

Deep Learning: A Practitioner’s Approach

مشخصات کتاب

Deep Learning: A Practitioner’s Approach

ویرایش: 1 
نویسندگان:   
سری:  
ISBN (شابک) : 1491914254, 9781491914250 
ناشر: O’Reilly Media 
سال نشر: 2017 
تعداد صفحات: 532 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 11 مگابایت 

قیمت کتاب (تومان) : 52,000



کلمات کلیدی مربوط به کتاب یادگیری عمیق: رویکرد یک پزشک: مدل‌سازی و طراحی داده، پایگاه‌های داده و کلان داده، رایانه‌ها و فناوری، داده‌کاوی، پایگاه‌های داده و داده‌های بزرگ، رایانه‌ها و فناوری، پردازش داده، پایگاه‌های داده و کلان داده، رایانه‌ها و فناوری، ذخیره‌سازی و طراحی پایگاه داده، علوم رایانه، جدید، استفاده شده و اجاره کتاب های درسی، بوتیک تخصصی



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 16


در صورت تبدیل فایل کتاب Deep Learning: A Practitioner’s Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب یادگیری عمیق: رویکرد یک پزشک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب یادگیری عمیق: رویکرد یک پزشک

به دنبال یک منبع مرکزی هستید که در آن بتوانید یافته های کلیدی در مورد یادگیری ماشین را بیاموزید؟ یادگیری عمیق: راهنمای قطعی، کاربردی ترین اطلاعات موجود در مورد این موضوع را در اختیار توسعه دهندگان و دانشمندان داده قرار می دهد، از جمله نظریه یادگیری عمیق، بهترین شیوه ها و موارد استفاده. نویسندگان آدام گیبسون و جاش پترسون آخرین مقالات و تکنیک های مرتبط را به شیوه ای غیر آکادمیک ارائه می کنند و ریاضیات اصلی را در کتابخانه DL4J خود پیاده سازی می کنند. اگر در فضاهای جاسازی شده، دسکتاپ و کلان داده/هدوپ کار می کنید و واقعاً می خواهید یادگیری عمیق را درک کنید، این کتاب شماست.


توضیحاتی درمورد کتاب به خارجی

Looking for one central source where you can learn key findings on machine learning? Deep Learning: The Definitive Guide provides developers and data scientists with the most practical information available on the subject, including deep learning theory, best practices, and use cases. Authors Adam Gibson and Josh Patterson present the latest relevant papers and techniques in a non­academic manner, and implement the core mathematics in their DL4J library. If you work in the embedded, desktop, and big data/Hadoop spaces and really want to understand deep learning, this is your book.



فهرست مطالب

Copyright
Table of Contents
Preface
	What’s in This Book?
	Who Is “The Practitioner”?
	Who Should Read This Book?
		The Enterprise Machine Learning Practitioner
		The Enterprise Executive
		The Academic
	Conventions Used in This Book
	Using Code Examples
	Administrative Notes
	O’Reilly Safari
	How to Contact Us
	Acknowledgments
		Josh
		Adam
Chapter 1. A Review of Machine Learning
	The Learning Machines
		How Can Machines Learn?
		Biological Inspiration
		What Is Deep Learning?
		Going Down the Rabbit Hole
	Framing the Questions
	The Math Behind Machine Learning: Linear Algebra
		Scalars
		Vectors
		Matrices
		Tensors
		Hyperplanes
		Relevant Mathematical Operations
		Converting Data Into Vectors
		Solving Systems of Equations
	The Math Behind Machine Learning: Statistics
		Probability
		Conditional Probabilities
		Posterior Probability
		Distributions
		Samples Versus Population
		Resampling Methods
		Selection Bias
		Likelihood
	How Does Machine Learning Work?
		Regression
		Classification
		Clustering
		Underfitting and Overfitting
		Optimization
		Convex Optimization
		Gradient Descent
		Stochastic Gradient Descent
		Quasi-Newton Optimization Methods
		Generative Versus Discriminative Models
	Logistic Regression
		The Logistic Function
		Understanding Logistic Regression Output
	Evaluating Models
		The Confusion Matrix
	Building an Understanding of Machine Learning
Chapter 2. Foundations of Neural Networks and Deep Learning
	Neural Networks
		The Biological Neuron
		The Perceptron
		Multilayer Feed-Forward Networks
	Training Neural Networks
		Backpropagation Learning
	Activation Functions
		Linear
		Sigmoid
		Tanh
		Hard Tanh
		Softmax
		Rectified Linear
	Loss Functions
		Loss Function Notation
		Loss Functions for Regression
		Loss Functions for Classification
		Loss Functions for Reconstruction
	Hyperparameters
		Learning Rate
		Regularization
		Momentum
		Sparsity
Chapter 3. Fundamentals of Deep Networks
	Defining Deep Learning
		What Is Deep Learning?
		Organization of This Chapter
	Common Architectural Principles of Deep Networks
		Parameters
		Layers
		Activation Functions
		Loss Functions
		Optimization Algorithms
		Hyperparameters
		Summary
	Building Blocks of Deep Networks
		RBMs
		Autoencoders
		Variational Autoencoders
Chapter 4. Major Architectures of Deep Networks
	Unsupervised Pretrained Networks
		Deep Belief Networks
		Generative Adversarial Networks
	Convolutional Neural Networks (CNNs)
		Biological Inspiration
		Intuition
		CNN Architecture Overview
		Input Layers
		Convolutional Layers
		Pooling Layers
		Fully Connected Layers
		Other Applications of CNNs
		CNNs of Note
		Summary
	Recurrent Neural Networks
		Modeling the Time Dimension
		3D Volumetric Input
		Why Not Markov Models?
		General Recurrent Neural Network Architecture
		LSTM Networks
		Domain-Specific Applications and Blended Networks
	Recursive Neural Networks
		Network Architecture
		Varieties of Recursive Neural Networks
		Applications of Recursive Neural Networks
	Summary and Discussion
		Will Deep Learning Make Other Algorithms Obsolete?
		Different Problems Have Different Best Methods
		When Do I Need Deep Learning?
Chapter 5. Building Deep Networks
	Matching Deep Networks to the Right Problem
		Columnar Data and Multilayer Perceptrons
		Images and Convolutional Neural Networks
		Time-series Sequences and Recurrent Neural Networks
		Using Hybrid Networks
	The DL4J Suite of Tools
		Vectorization and DataVec
		Runtimes and ND4J
	Basic Concepts of the DL4J API
		Loading and Saving Models
		Getting Input for the Model
		Setting Up Model Architecture
		Training and Evaluation
	Modeling CSV Data with Multilayer Perceptron Networks
		Setting Up Input Data
		Determining Network Architecture
		Training the Model
		Evaluating the Model
	Modeling Handwritten Images Using CNNs
		Java Code Listing for the LeNet CNN
		Loading and Vectorizing the Input Images
		Network Architecture for LeNet in DL4J
		Training the CNN
	Modeling Sequence Data by Using Recurrent Neural Networks
		Generating Shakespeare via LSTMs
		Classifying Sensor Time-series Sequences Using LSTMs
	Using Autoencoders for Anomaly Detection
		Java Code Listing for Autoencoder Example
		Setting Up Input Data
		Autoencoder Network Architecture and Training
		Evaluating the Model
	Using Variational Autoencoders to Reconstruct MNIST Digits
		Code Listing to Reconstruct MNIST Digits
		Examining the VAE Model
	Applications of Deep Learning in Natural Language Processing
		Learning Word Embedding Using Word2Vec
		Distributed Representations of Sentences with Paragraph Vectors
		Using Paragraph Vectors for Document Classification
Chapter 6. Tuning Deep Networks
	Basic Concepts in Tuning Deep Networks
		An Intuition for Building Deep Networks
		Building the Intuition as a Step-by-Step Process
	Matching Input Data and Network Architectures
		Summary
	Relating Model Goal and Output Layers
		Regression Model Output Layer
		Classification Model Output Layer
	Working with Layer Count, Parameter Count, and Memory
		Feed-Forward Multilayer Neural Networks
		Controlling Layer and Parameter Counts
		Estimating Network Memory Requirements
	Weight Initialization Strategies
	Using Activation Functions
		Summary Table for Activation Functions
	Applying Loss Functions
	Understanding Learning Rates
		Using the Ratio of Updates-to-Parameters
		Specific Recommendations for Learning Rates
	How Sparsity Affects Learning
	Applying Methods of Optimization
		SGD Best Practices
	Using Parallelization and GPUs for Faster Training
		Online Learning and Parallel Iterative Algorithms
		Parallelizing SGD in DL4J
		GPUs
	Controlling Epochs and Mini-Batch Size
		Understanding Mini-Batch Size Trade-Offs
	How to Use Regularization
		Priors as Regularizers
		Max-Norm Regularization
		Dropout
		Other Regularization Topics
	Working with Class Imbalance
		Methods for Sampling Classes
		Weighted Loss Functions
	Dealing with Overfitting
	Using Network Statistics from the Tuning UI
		Detecting Poor Weight Initialization
		Detecting Nonshuffled Data
		Detecting Issues with Regularization
Chapter 7. Tuning Specific Deep Network Architectures
	Convolutional Neural Networks (CNNs)
		Common Convolutional Architectural Patterns
		Configuring Convolutional Layers
		Configuring Pooling Layers
		Transfer Learning
	Recurrent Neural Networks
		Network Input Data and Input Layers
		Output Layers and RnnOutputLayer
		Training the Network
		Debugging Common Issues with LSTMs
		Padding and Masking
		Evaluation and Scoring With Masking
		Variants of Recurrent Network Architectures
	Restricted Boltzmann Machines
		Hidden Units and Modeling Available Information
		Using Different Units
		Using Regularization with RBMs
	DBNs
		Using Momentum
		Using Regularization
		Determining Hidden Unit Count
Chapter 8. Vectorization
	Introduction to Vectorization in Machine Learning
		Why Do We Need to Vectorize Data?
		Strategies for Dealing with Columnar Raw Data Attributes
		Feature Engineering and Normalization Techniques
	Using DataVec for ETL and Vectorization
	Vectorizing Image Data
		Image Data Representation in DL4J
		Image Data and Vector Normalization with DataVec
	Working with Sequential Data in Vectorization
		Major Variations of Sequential Data Sources
		Vectorizing Sequential Data with DataVec
	Working with Text in Vectorization
		Bag of Words
		TF-IDF
		Comparing Word2Vec and VSM Comparison
	Working with Graphs
Chapter 9. Using Deep Learning and DL4J on Spark
	Introduction to Using DL4J with Spark and Hadoop
		Operating Spark from the Command Line
	Configuring and Tuning Spark Execution
		Running Spark on Mesos
		Running Spark on YARN
		General Spark Tuning Guide
		Tuning DL4J Jobs on Spark
	Setting Up a Maven Project Object Model for Spark and DL4J
		A pom.xml File Dependency Template
		Setting Up a POM File for CDH 5.X
		Setting Up a POM File for HDP 2.4
	Troubleshooting Spark and Hadoop
		Common Issues with ND4J
	DL4J Parallel Execution on Spark
		A Minimal Spark Training Example
	DL4J API Best Practices for Spark
	Multilayer Perceptron Spark Example
		Setting Up MLP Network Architecture for Spark
		Distributed Training and Model Evaluation
		Building and Executing a DL4J Spark Job
	Generating Shakespeare Text with Spark and Long Short-Term Memory
		Setting Up the LSTM Network Architecture
		Training, Tracking Progress, and Understanding Results
	Modeling MNIST with a Convolutional Neural Network on Spark
		Configuring the Spark Job and Loading MNIST Data
		Setting Up the LeNet CNN Architecture and Training
Appendix A. What Is Artificial Intelligence?
	The Story So Far
		Defining Deep Learning
		Defining Artificial Intelligence
	What Is Driving Interest Today in AI Today?
	Winter Is Coming
Appendix B. RL4J and Reinforcement Learning
	Preliminaries
		Markov Decision Process
		Terminology
	Different Settings
		Model-Free
		Observation Setting
		Single-Player and Adversarial Games
	Q-Learning
		From Policy to Neural Networks the following
		Policy Iteration
		Exploration Versus Exploitation
		Bellman Equation
		Initial State Sampling
		Q-Learning Implementation
		Modeling Q(s,a)
		Experience Replay
		Convolutional Layers and Image Preprocessing
		History Processing
		Double Q-Learning
		Clipping
		Scaling Rewards
		Prioritized Replay
	Graph, Visualization, and Mean-Q
	RL4J
	Conclusion
Appendix C. Numbers Everyone Should Know
Appendix D. Neural Networks and Backpropagation: A Mathematical Approach
	Introduction
	Backpropagation in a Multilayer Perceptron
Appendix E. Using the ND4J API
	Design and Basic Usage
		Understanding NDArrays
		ND4J General Syntax
		The Basics of Working with NDArrays
		Dataset
	Creating Input Vectors
		Basics of Vector Creation
	Using MLLibUtil
		Converting from INDArray to MLLib Vector
		Converting from MLLib Vector to INDArray
	Making Model Predictions with DL4J
		Using the DL4J and ND4J Together
Appendix F. Using DataVec
	Loading Data for Machine Learning
	Loading CSV Data for Multilayer Perceptrons
	Loading Image Data for Convolutional Neural Networks
	Loading Sequence Data for Recurrent Neural Networks
	Transforming Data: Data Wrangling with DataVec
		DataVec Transforms: Key Concepts
		DataVec Transform Functionality: An Example
Appendix G. Working with DL4J from Source
	Verifying Git Is Installed
	Cloning Key DL4J GitHub Projects
	Downloading Source via Zip File
	Using Maven to Build Source Code
Appendix H. Setting Up DL4J Projects
	Creating a New DL4J Project
		Java
		Working with Maven
		IDEs
	Setting Up Other Maven POMs
		ND4J and Maven
Appendix I. Setting Up GPUs for DL4J Projects
	Switching Backends to GPU
		Picking a GPU
		Training on a Multiple GPU System
	CUDA on Different Platforms
	Monitoring GPU Performance
		NVIDIA System Management Interface
Appendix J. Troubleshooting DL4J Installations
	Previous Installation
	Memory Errors When Installing From Source
	Older Versions of Maven
	Maven and PATH Variables
	Bad JDK Versions
	C++ and Other Development Tools
	Windows and Include Paths
	Monitoring GPUs
	Using the JVisualVM
	Working with Clojure
	OS X and Float Support
	Fork-Join Bug in Java 7
	Precautions
		Other Local Repositories
		Check Maven Dependencies
		Reinstall Dependencies
		If All Else Fails
	Different Platforms
		OS X
		Windows
		Linux
Index
About the Authors
Colophon




نظرات کاربران