دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: 1
نویسندگان: Josh Patterson. Adam Gibson
سری:
ISBN (شابک) : 1491914254, 9781491914250
ناشر: O’Reilly Media
سال نشر: 2017
تعداد صفحات: 532
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 11 مگابایت
کلمات کلیدی مربوط به کتاب یادگیری عمیق: رویکرد یک پزشک: مدلسازی و طراحی داده، پایگاههای داده و کلان داده، رایانهها و فناوری، دادهکاوی، پایگاههای داده و دادههای بزرگ، رایانهها و فناوری، پردازش داده، پایگاههای داده و کلان داده، رایانهها و فناوری، ذخیرهسازی و طراحی پایگاه داده، علوم رایانه، جدید، استفاده شده و اجاره کتاب های درسی، بوتیک تخصصی
در صورت تبدیل فایل کتاب Deep Learning: A Practitioner’s Approach به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری عمیق: رویکرد یک پزشک نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
به دنبال یک منبع مرکزی هستید که در آن بتوانید یافته های کلیدی در مورد یادگیری ماشین را بیاموزید؟ یادگیری عمیق: راهنمای قطعی، کاربردی ترین اطلاعات موجود در مورد این موضوع را در اختیار توسعه دهندگان و دانشمندان داده قرار می دهد، از جمله نظریه یادگیری عمیق، بهترین شیوه ها و موارد استفاده. نویسندگان آدام گیبسون و جاش پترسون آخرین مقالات و تکنیک های مرتبط را به شیوه ای غیر آکادمیک ارائه می کنند و ریاضیات اصلی را در کتابخانه DL4J خود پیاده سازی می کنند. اگر در فضاهای جاسازی شده، دسکتاپ و کلان داده/هدوپ کار می کنید و واقعاً می خواهید یادگیری عمیق را درک کنید، این کتاب شماست.
Looking for one central source where you can learn key findings on machine learning? Deep Learning: The Definitive Guide provides developers and data scientists with the most practical information available on the subject, including deep learning theory, best practices, and use cases. Authors Adam Gibson and Josh Patterson present the latest relevant papers and techniques in a nonacademic manner, and implement the core mathematics in their DL4J library. If you work in the embedded, desktop, and big data/Hadoop spaces and really want to understand deep learning, this is your book.
Copyright Table of Contents Preface What’s in This Book? Who Is “The Practitioner”? Who Should Read This Book? The Enterprise Machine Learning Practitioner The Enterprise Executive The Academic Conventions Used in This Book Using Code Examples Administrative Notes O’Reilly Safari How to Contact Us Acknowledgments Josh Adam Chapter 1. A Review of Machine Learning The Learning Machines How Can Machines Learn? Biological Inspiration What Is Deep Learning? Going Down the Rabbit Hole Framing the Questions The Math Behind Machine Learning: Linear Algebra Scalars Vectors Matrices Tensors Hyperplanes Relevant Mathematical Operations Converting Data Into Vectors Solving Systems of Equations The Math Behind Machine Learning: Statistics Probability Conditional Probabilities Posterior Probability Distributions Samples Versus Population Resampling Methods Selection Bias Likelihood How Does Machine Learning Work? Regression Classification Clustering Underfitting and Overfitting Optimization Convex Optimization Gradient Descent Stochastic Gradient Descent Quasi-Newton Optimization Methods Generative Versus Discriminative Models Logistic Regression The Logistic Function Understanding Logistic Regression Output Evaluating Models The Confusion Matrix Building an Understanding of Machine Learning Chapter 2. Foundations of Neural Networks and Deep Learning Neural Networks The Biological Neuron The Perceptron Multilayer Feed-Forward Networks Training Neural Networks Backpropagation Learning Activation Functions Linear Sigmoid Tanh Hard Tanh Softmax Rectified Linear Loss Functions Loss Function Notation Loss Functions for Regression Loss Functions for Classification Loss Functions for Reconstruction Hyperparameters Learning Rate Regularization Momentum Sparsity Chapter 3. Fundamentals of Deep Networks Defining Deep Learning What Is Deep Learning? Organization of This Chapter Common Architectural Principles of Deep Networks Parameters Layers Activation Functions Loss Functions Optimization Algorithms Hyperparameters Summary Building Blocks of Deep Networks RBMs Autoencoders Variational Autoencoders Chapter 4. Major Architectures of Deep Networks Unsupervised Pretrained Networks Deep Belief Networks Generative Adversarial Networks Convolutional Neural Networks (CNNs) Biological Inspiration Intuition CNN Architecture Overview Input Layers Convolutional Layers Pooling Layers Fully Connected Layers Other Applications of CNNs CNNs of Note Summary Recurrent Neural Networks Modeling the Time Dimension 3D Volumetric Input Why Not Markov Models? General Recurrent Neural Network Architecture LSTM Networks Domain-Specific Applications and Blended Networks Recursive Neural Networks Network Architecture Varieties of Recursive Neural Networks Applications of Recursive Neural Networks Summary and Discussion Will Deep Learning Make Other Algorithms Obsolete? Different Problems Have Different Best Methods When Do I Need Deep Learning? Chapter 5. Building Deep Networks Matching Deep Networks to the Right Problem Columnar Data and Multilayer Perceptrons Images and Convolutional Neural Networks Time-series Sequences and Recurrent Neural Networks Using Hybrid Networks The DL4J Suite of Tools Vectorization and DataVec Runtimes and ND4J Basic Concepts of the DL4J API Loading and Saving Models Getting Input for the Model Setting Up Model Architecture Training and Evaluation Modeling CSV Data with Multilayer Perceptron Networks Setting Up Input Data Determining Network Architecture Training the Model Evaluating the Model Modeling Handwritten Images Using CNNs Java Code Listing for the LeNet CNN Loading and Vectorizing the Input Images Network Architecture for LeNet in DL4J Training the CNN Modeling Sequence Data by Using Recurrent Neural Networks Generating Shakespeare via LSTMs Classifying Sensor Time-series Sequences Using LSTMs Using Autoencoders for Anomaly Detection Java Code Listing for Autoencoder Example Setting Up Input Data Autoencoder Network Architecture and Training Evaluating the Model Using Variational Autoencoders to Reconstruct MNIST Digits Code Listing to Reconstruct MNIST Digits Examining the VAE Model Applications of Deep Learning in Natural Language Processing Learning Word Embedding Using Word2Vec Distributed Representations of Sentences with Paragraph Vectors Using Paragraph Vectors for Document Classification Chapter 6. Tuning Deep Networks Basic Concepts in Tuning Deep Networks An Intuition for Building Deep Networks Building the Intuition as a Step-by-Step Process Matching Input Data and Network Architectures Summary Relating Model Goal and Output Layers Regression Model Output Layer Classification Model Output Layer Working with Layer Count, Parameter Count, and Memory Feed-Forward Multilayer Neural Networks Controlling Layer and Parameter Counts Estimating Network Memory Requirements Weight Initialization Strategies Using Activation Functions Summary Table for Activation Functions Applying Loss Functions Understanding Learning Rates Using the Ratio of Updates-to-Parameters Specific Recommendations for Learning Rates How Sparsity Affects Learning Applying Methods of Optimization SGD Best Practices Using Parallelization and GPUs for Faster Training Online Learning and Parallel Iterative Algorithms Parallelizing SGD in DL4J GPUs Controlling Epochs and Mini-Batch Size Understanding Mini-Batch Size Trade-Offs How to Use Regularization Priors as Regularizers Max-Norm Regularization Dropout Other Regularization Topics Working with Class Imbalance Methods for Sampling Classes Weighted Loss Functions Dealing with Overfitting Using Network Statistics from the Tuning UI Detecting Poor Weight Initialization Detecting Nonshuffled Data Detecting Issues with Regularization Chapter 7. Tuning Specific Deep Network Architectures Convolutional Neural Networks (CNNs) Common Convolutional Architectural Patterns Configuring Convolutional Layers Configuring Pooling Layers Transfer Learning Recurrent Neural Networks Network Input Data and Input Layers Output Layers and RnnOutputLayer Training the Network Debugging Common Issues with LSTMs Padding and Masking Evaluation and Scoring With Masking Variants of Recurrent Network Architectures Restricted Boltzmann Machines Hidden Units and Modeling Available Information Using Different Units Using Regularization with RBMs DBNs Using Momentum Using Regularization Determining Hidden Unit Count Chapter 8. Vectorization Introduction to Vectorization in Machine Learning Why Do We Need to Vectorize Data? Strategies for Dealing with Columnar Raw Data Attributes Feature Engineering and Normalization Techniques Using DataVec for ETL and Vectorization Vectorizing Image Data Image Data Representation in DL4J Image Data and Vector Normalization with DataVec Working with Sequential Data in Vectorization Major Variations of Sequential Data Sources Vectorizing Sequential Data with DataVec Working with Text in Vectorization Bag of Words TF-IDF Comparing Word2Vec and VSM Comparison Working with Graphs Chapter 9. Using Deep Learning and DL4J on Spark Introduction to Using DL4J with Spark and Hadoop Operating Spark from the Command Line Configuring and Tuning Spark Execution Running Spark on Mesos Running Spark on YARN General Spark Tuning Guide Tuning DL4J Jobs on Spark Setting Up a Maven Project Object Model for Spark and DL4J A pom.xml File Dependency Template Setting Up a POM File for CDH 5.X Setting Up a POM File for HDP 2.4 Troubleshooting Spark and Hadoop Common Issues with ND4J DL4J Parallel Execution on Spark A Minimal Spark Training Example DL4J API Best Practices for Spark Multilayer Perceptron Spark Example Setting Up MLP Network Architecture for Spark Distributed Training and Model Evaluation Building and Executing a DL4J Spark Job Generating Shakespeare Text with Spark and Long Short-Term Memory Setting Up the LSTM Network Architecture Training, Tracking Progress, and Understanding Results Modeling MNIST with a Convolutional Neural Network on Spark Configuring the Spark Job and Loading MNIST Data Setting Up the LeNet CNN Architecture and Training Appendix A. What Is Artificial Intelligence? The Story So Far Defining Deep Learning Defining Artificial Intelligence What Is Driving Interest Today in AI Today? Winter Is Coming Appendix B. RL4J and Reinforcement Learning Preliminaries Markov Decision Process Terminology Different Settings Model-Free Observation Setting Single-Player and Adversarial Games Q-Learning From Policy to Neural Networks the following Policy Iteration Exploration Versus Exploitation Bellman Equation Initial State Sampling Q-Learning Implementation Modeling Q(s,a) Experience Replay Convolutional Layers and Image Preprocessing History Processing Double Q-Learning Clipping Scaling Rewards Prioritized Replay Graph, Visualization, and Mean-Q RL4J Conclusion Appendix C. Numbers Everyone Should Know Appendix D. Neural Networks and Backpropagation: A Mathematical Approach Introduction Backpropagation in a Multilayer Perceptron Appendix E. Using the ND4J API Design and Basic Usage Understanding NDArrays ND4J General Syntax The Basics of Working with NDArrays Dataset Creating Input Vectors Basics of Vector Creation Using MLLibUtil Converting from INDArray to MLLib Vector Converting from MLLib Vector to INDArray Making Model Predictions with DL4J Using the DL4J and ND4J Together Appendix F. Using DataVec Loading Data for Machine Learning Loading CSV Data for Multilayer Perceptrons Loading Image Data for Convolutional Neural Networks Loading Sequence Data for Recurrent Neural Networks Transforming Data: Data Wrangling with DataVec DataVec Transforms: Key Concepts DataVec Transform Functionality: An Example Appendix G. Working with DL4J from Source Verifying Git Is Installed Cloning Key DL4J GitHub Projects Downloading Source via Zip File Using Maven to Build Source Code Appendix H. Setting Up DL4J Projects Creating a New DL4J Project Java Working with Maven IDEs Setting Up Other Maven POMs ND4J and Maven Appendix I. Setting Up GPUs for DL4J Projects Switching Backends to GPU Picking a GPU Training on a Multiple GPU System CUDA on Different Platforms Monitoring GPU Performance NVIDIA System Management Interface Appendix J. Troubleshooting DL4J Installations Previous Installation Memory Errors When Installing From Source Older Versions of Maven Maven and PATH Variables Bad JDK Versions C++ and Other Development Tools Windows and Include Paths Monitoring GPUs Using the JVisualVM Working with Clojure OS X and Float Support Fork-Join Bug in Java 7 Precautions Other Local Repositories Check Maven Dependencies Reinstall Dependencies If All Else Fails Different Platforms OS X Windows Linux Index About the Authors Colophon