دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: [2 ed.] نویسندگان: Antonio Gulli, Amita Kapoor, Sujit Pal سری: ISBN (شابک) : 9781838823412 ناشر: Packt سال نشر: 2019 تعداد صفحات: 646 [647] زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Deep Learning with TensorFlow 2.0 and Keras: Regression, ConvNets, GANs, RNNs, NLP & more with TF 2.0 and the Keras API به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری عمیق با TensorFlow 2.0 و Keras: رگرسیون ، ConvNets ، GAN ها ، RNN ها ، NLP و موارد دیگر با TF 2.0 و Keras API نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Cover Copyright Packt Page Contributors Table of Contents Preface Chapter 1: Neural Network Foundations with TensorFlow 2.0 What is TensorFlow (TF)? What is Keras? What are the most important changes in TensorFlow 2.0? Introduction to neural networks Perceptron A first example of TensorFlow 2.0 code Multi-layer perceptron – our first example of a network Problems in training the perceptron and their solutions Activation function – sigmoid Activation function – tanh Activation function – ReLU Two additional activation functions – ELU and LeakyReLU Activation functions In short – what are neural networks after all? A real example – recognizing handwritten digits One-hot encoding (OHE) Defining a simple neural network in TensorFlow 2.0 Running a simple TensorFlow 2.0 net and establishing a baseline Improving the simple net in TensorFlow 2.0 with hidden layers Further improving the simple net in TensorFlow with Dropout Testing different optimizers in TensorFlow 2.0 Increasing the number of epochs Controlling the optimizer learning rate Increasing the number of internal hidden neurons Increasing the size of batch computation Summarizing experiments run for recognizing handwritten charts Regularization Adopting regularization to avoid overfitting Understanding BatchNormalization Playing with Google Colab – CPUs, GPUs, and TPUs Sentiment analysis Hyperparameter tuning and AutoML Predicting output A practical overview of backpropagation What have we learned so far? Towards a deep learning approach References Chapter 2: TensorFlow 1.x and 2.x Understanding TensorFlow 1.x TensorFlow 1.x computational graph program structure Computational graphs Working with constants, variables, and placeholders Examples of operations Constants Sequences Random tensors Variables An example of TensorFlow 1.x in TensorFlow 2.x Understanding TensorFlow 2.x Eager execution AutoGraph Keras APIs – three programming models Sequential API Functional API Model subclassing Callbacks Saving a model and weights Training from tf.data.datasets tf.keras or Estimators? Ragged tensors Custom training Distributed training in TensorFlow 2.x Multiple GPUs MultiWorkerMirroredStrategy TPUStrategy ParameterServerStrategy Changes in namespaces Converting from 1.x to 2.x Using TensorFlow 2.x effectively The TensorFlow 2.x ecosystem Language bindings Keras or tf.keras? Summary Chapter 3: Regression What is regression? Prediction using linear regression Simple linear regression Multiple linear regression Multivariate linear regression TensorFlow Estimators Feature columns Input functions MNIST using TensorFlow Estimator API Predicting house price using linear regression Classification tasks and decision boundaries Logistic regression Logistic regression on the MNIST dataset Summary References Chapter 4: Convolutional Neural Networks Deep Convolutional Neural Network (DCNN) Local receptive fields Shared weights and bias A mathematical example Convnets in TensorFlow 2.x Pooling layers Max pooling Average pooling ConvNets summary An example of DCNN ‒ LeNet LeNet code in TensorFlow 2.0 Understanding the power of deep learning Recognizing CIFAR-10 images with deep learning Improving the CIFAR-10 performance with a deeper network Improving the CIFAR-10 performance with data augmentation Predicting with CIFAR-10 Very deep convolutional networks for large-scale image recognition Recognizing cats with a VGG16 Net Utilizing tf.Keras built-in VGG16 Net module Recycling prebuilt deep learning models for extracting features Summary References Chapter 5: Advanced Convolutional Neural Networks Computer vision Composing CNNs for complex tasks Classification and localization Semantic segmentation Object detection Instance segmentation Classifying Fashion-MNIST with a tf.keras - estimator model Run Fashion-MNIST the tf.keras - estimator model on GPUs Deep Inception-v3 Net used for transfer learning Transfer learning for classifying horses and humans Application Zoos with tf.keras and TensorFlow Hub Keras applications TensorFlow Hub Other CNN architectures AlexNet Residual networks HighwayNets and DenseNets Xception Answering questions about images (VQA) Style transfer Content distance Style distance Creating a DeepDream network Inspecting what a network has learned Video Classifying videos with pretrained nets in six different ways Textual documents Using a CNN for sentiment analysis Audio and music Dilated ConvNets, WaveNet, and NSynth A summary of convolution operations Basic convolutional neural networks (CNN or ConvNet) Dilated convolution Transposed convolution Separable convolution Depthwise convolution Depthwise separable convolution Capsule networks So what is the problem with CNNs? So what is new with Capsule networks? Summary References Chapter 6: Generative Adversarial Networks What is a GAN? MNIST using GAN in TensorFlow Deep convolutional GAN (DCGAN) DCGAN for MNIST digits Some interesting GAN architectures SRGAN CycleGAN InfoGAN Cool applications of GANs CycleGAN in TensorFlow 2.0 Summary References Chapter 7: Word Embeddings Word embedding ‒ origins and fundamentals Distributed representations Static embeddings Word2Vec GloVe Creating your own embedding using gensim Exploring the embedding space with gensim Using word embeddings for spam detection Getting the data Making the data ready for use Building the embedding matrix Define the spam classifier Train and evaluate the model Running the spam detector Neural embeddings – not just for words Item2Vec node2vec Character and subword embeddings Dynamic embeddings Language model-based embeddings Using BERT as a feature extractor Fine-tuning BERT Classifying with BERT ‒ command line Using BERT as part of your own network Summary References Chapter 8: Recurrent Neural Networks The basic RNN cell Backpropagation through time (BPTT) Vanishing and exploding gradients RNN cell variants Long short-term memory (LSTM) Gated recurrent unit (GRU) Peephole LSTM RNN variants Bidirectional RNNs Stateful RNNs RNN topologies Example ‒ One-to-Many – learning to generate text Example ‒ Many-to-One – Sentiment Analysis Example ‒ Many-to-Many – POS tagging Encoder-Decoder architecture – seq2seq Example ‒ seq2seq without attention for machine translation Attention mechanism Example ‒ seq2seq with attention for machine translation Transformer architecture Summary References Chapter 9: Autoencoders Introduction to autoencoders Vanilla autoencoders TensorFlow Keras layers ‒ defining custom layers Reconstructing handwritten digits using an autoencoder Sparse autoencoder Denoising autoencoders Clearing images using a Denoising autoencoder Stacked autoencoder Convolutional autoencoder for removing noise from images Keras autoencoder example ‒ sentence vectors Summary References Chapter 10: Unsupervised Learning Principal component analysis PCA on the MNIST dataset TensorFlow Embedding API K-means clustering K-means in TensorFlow 2.0 Variations in k-means Self-organizing maps Colour mapping using SOM Restricted Boltzmann machines Reconstructing images using RBM Deep belief networks Variational Autoencoders Summary References Chapter 11: Reinforcement Learning Introduction RL lingo Deep reinforcement learning algorithms Reinforcement success in recent years Introduction to OpenAI Gym Random agent playing Breakout Deep Q-Networks DQN for CartPole DQN to play a game of Atari DQN variants Double DQN Dueling DQN Rainbow Deep deterministic policy gradient Summary References Chapter 12: TensorFlow and Cloud Deep learning on cloud Microsoft Azure Amazon Web Services (AWS) Google Cloud Platform (GCP) IBM Cloud Virtual machines on cloud EC2 on Amazon Compute Instance on GCP Virtual machine on Microsoft Azure Jupyter Notebooks on cloud SageMaker Google Colaboratory Microsoft Azure Notebooks TensorFlow Extended for production TFX Pipelines TFX pipeline components TFX libraries TensorFlow Enterprise Summary References Chapter 13: TensorFlow for Mobile and IoT and TensorFlow.js TensorFlow Mobile TensorFlow Lite Quantization FlatBuffers Mobile converter Mobile optimized interpreter Supported platforms Architecture Using TensorFlow Lite A generic example of application Using GPUs and accelerators An example of application Pretrained models in TensorFlow Lite Image classification Object detection Pose estimation Smart reply Segmentation Style transfer Text classification Question and answering A note about using mobile GPUs An overview of federated learning at the edge TensorFlow FL APIs TensorFlow.js Vanilla TensorFlow.js Converting models Pretrained models Node.js Summary References Chapter 14: An introduction to AutoML What is AutoML? Achieving AutoML Automatic data preparation Automatic feature engineering Automatic model generation AutoKeras Google Cloud AutoML Using Cloud AutoML ‒ Tables solution Using Cloud AutoML ‒ Vision solution Using Cloud AutoML ‒ Text Classification solution Using Cloud AutoML ‒ Translation solution Using Cloud AutoML ‒ Video Intelligence Classification solution Cost Bringing Google AutoML to Kaggle Summary References Chapter 15: The Math Behind Deep Learning History Some mathematical tools Derivatives and gradients everywhere Gradient descent Chain rule A few differentiation rules Matrix operations Activation functions Derivative of the sigmoid Derivative of tanh Derivative of ReLU Backpropagation Forward step Backstep Case 1 – From hidden layer to output layer Case 2 ‒ From hidden layer to hidden layer Limit of backpropagation Cross entropy and its derivative Batch gradient descent, stochastic gradient descent, and mini-batch Batch Gradient Descent (BGD) Stochastic Gradient Descent (SGD) Mini-Batch Gradient Descent (MBGD) Thinking about backpropagation and convnets Thinking about backpropagation and RNNs A note on TensorFlow and automatic differentiation Summary References Chapter 16: Tensor Processing Unit C/G/T processing units CPUs and GPUs TPUs Three generations of TPUs and Edge TPU First-generation TPU Second-generation TPU Third-generation TPU Edge TPU TPU performance How to use TPUs with Colab Checking whether TPUs are available Loading data with tf.data Building a model and loading it into the TPU Using pretrained TPU models Using TensorFlow 2.1 and nightly build Summary References Other Books You May Enjoy Index