دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش:
نویسندگان: Gobert Lee (editor). Hiroshi Fujita (editor)
سری:
ISBN (شابک) : 303033127X, 9783030331276
ناشر: Springer
سال نشر: 2020
تعداد صفحات: 184
زبان: English
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود)
حجم فایل: 10 مگابایت
در صورت تبدیل فایل کتاب Deep Learning in Medical Image Analysis: Challenges and Applications (Advances in Experimental Medicine and Biology, 1213) به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری عمیق در تجزیه و تحلیل تصویر پزشکی: چالش ها و کاربردها (پیشرفت ها در پزشکی تجربی و زیست شناسی، 1213) نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
این کتاب تحقیقات پیشرفته و کاربردهای یادگیری عمیق را در طیف وسیعی از سناریوهای تصویربرداری پزشکی، مانند تشخیص به کمک رایانه، تقسیمبندی تصویر، تشخیص و طبقهبندی بافت، و سایر زمینههای مشکلات پزشکی و بهداشتی ارائه میکند. هر یک از فصلهای آن موضوعی را به طور عمیق پوشش میدهد، از سنتز تصویر پزشکی و تکنیکهای آنالیز اسکلتی عضلانی تا ابزارهای تشخیصی ضایعات پستان در ماموگرافی دیجیتال و گلوکوم در تصاویر فوندوس شبکیه. همچنین مروری بر یادگیری عمیق در تجزیه و تحلیل تصویر پزشکی ارائه میکند و مسائل و چالشهای پیش روی محققان و پزشکان را برجسته میکند و رویکردهای عملی را به طور کلی و در زمینه مشکلات خاص بررسی و بحث میکند. دانشگاهیان، محققان بالینی و صنعتی، و همچنین محققان جوان و دانشجویان فارغ التحصیل در رشته های تصویربرداری پزشکی، تشخیص به کمک کامپیوتر، مهندسی پزشکی و بینایی کامپیوتر، این کتاب را مرجع عالی و منبع یادگیری بسیار مفیدی خواهند یافت.
This book presents cutting-edge research and applications of deep learning in a broad range of medical imaging scenarios, such as computer-aided diagnosis, image segmentation, tissue recognition and classification, and other areas of medical and healthcare problems. Each of its chapters covers a topic in depth, ranging from medical image synthesis and techniques for muskuloskeletal analysis to diagnostic tools for breast lesions on digital mammograms and glaucoma on retinal fundus images. It also provides an overview of deep learning in medical image analysis and highlights issues and challenges encountered by researchers and clinicians, surveying and discussing practical approaches in general and in the context of specific problems. Academics, clinical and industry researchers, as well as young researchers and graduate students in medical imaging, computer-aided-diagnosis, biomedical engineering and computer vision will find this book a great reference and very useful learning resource.
Preface Contents Part I Overview and Issues Deep Learning in Medical Image Analysis Introduction Deep Learning for Medical Image Analysis and CAD Challenges in Deep-Learning-Based CAD Data Collection Transfer Learning Data Augmentation Training, Validation, and Independent Testing Acceptance Testing, Preclinical Testing, and User Training Quality Assurance and Performance Monitoring Interpretability of CAD/AI Recommendations Summary Medical Image Synthesis via Deep Learning Introduction Deep Learning Models for Medical Image Synthesis Convolutional Neural Networks Generative Adversarial Networks Within-Modality Synthesis 3D cGAN Framework Experimental Results Locality Adaptive Multi-Modality GANs Framework Experimental Results Cross-Modality Synthesis 3D cGAN with Subject-Specific Local Adaptive Fusion Framework Experimental Results Edge-Aware GANs Framework Experimental Results Conclusion Part II Applications: Screening and Diagnosis Deep Learning for Pulmonary Image Analysis: Classification, Detection, and Segmentation Background of Lung Diseases Introduction Methods Classification of Lung Abnormalities Detection of Lung Abnormalities Segmentation of Lung Abnormalities Conclusion Deep Learning Computer-Aided Diagnosis for Breast Lesion in Digital Mammogram Introduction Related Work Materials and Methods Dataset Datasets Preparation: Training, Validation, and Testing Preprocessing Data Balancing and Augmentation Initialization of Trainable Parameters for Deep Learning Models Breast Lesion Detection via YOLO Breast Lesion Segmentation via FrCN Breast Lesion Classification via Three Convolutional Neural Networks Experimental Settings Detection Experimental Settings Segmentation Experimental Settings Classification Experimental Settings Implementation Environment Experimental Results and Discussion Evaluation Metrics Breast Lesion Detection Results Breast Lesion Segmentation Results Breast Lesion Classification Results Conclusion Decision Support System for Lung Cancer Using PET/CT and Microscopic Images Introduction Outline of Decision Support System Automated Detection of Lung Nodules in PET/CT Images Using Convolutional Neural Network and Radiomic Features Background Method Overview Initial Nodule Detection False Positive Reduction Classification Using a Convolutional Neural Network Handcrafted Radiomic Features Classification Results Image Datasets Evaluation Metrics Detection Results Discussion Automated Malignancy Analysis of Lung Nodules in PET/CT Images Using Radiomic Features Introduction Materials and Methods Image Dataset Methods Overview Volume of Interest (VOI) Extraction Extraction of Characteristic Features Classification Results Discussion Automated Malignancy Analysis Using Lung Cytological Images Introduction Materials and Methods Image Dataset Network Architecture Results and Discussion Automated Classification of Lung Cancer Types from Cytological Images Introduction Materials and Methods Image Dataset Network Architecture Results and Discussion Conclusion Lesion Image Synthesis Using DCGANs for Metastatic Liver Cancer Detection Introduction Proposed Method Dataset Lesion Image Generation Method 1: Synthesis Using Poisson Blending Method 2: Generation Based on a CT Value Distribution Method 3: Generation Using DCGANs Selection of the Region of Interest for Lesion Synthesis Detection Method Experiments Results Discussion Conclusion Retinopathy Analysis Based on Deep ConvolutionNeural Network Introduction General Arteriolar Narrowing Detection Blood Vessel Extraction Related Works Database Preprocessing Blood Vessel Extraction Using DCNN Detection of Arteriolar Narrowing Using AVR Related Works Database Classification of Arteries and Veins AVR Measurement Microaneurysm Detection Related Work Database Methods Preprocessing Microaneurysm Detection Based on DCNN Reducing the Number of False Positives Examination Conclusion Diagnosis of Glaucoma on Retinal Fundus Images Using Deep Learning: Detection of Nerve Fiber Layer Defect and Optic Disc Analysis Introduction Related Works NFLD Detection Background Proposed Method Segmentation Network Detection Network Combined Method Dataset Preprocessing Evaluation Results Discussion Optic Disc Analysis Background Methods Dataset Results Discussion Summary Part III Applications: Emerging Opportunities Automatic Segmentation of Multiple Organs on 3D CT Images by Using Deep Learning Approaches Introduction Issue of Deep Learning for CT Image Segmentation Two Approaches for Multiple Organ Segmentations Using 2D and 3D Deep CNNs on CT Images Overview Deep Learning Anatomical Structures on 2D Sectional Images Deep Learning Local Appearances of Multiple Organs on 3D CT Images Conventional Image Segmentation Approach Results Discussions Segmentation Performances Training Protocol and Transfer Learning Comparison to Conventional Methods Computational Efficiency Conclusion Techniques and Applications in Skin OCT Analysis Introduction Skin Layer Segmentation in OCT Applications: Roughness, ET Deep Convolutional Networks in Skin Imaging Deep Learning for Classification of Dermoscopy Images Deep Learning for Classification of Full Field OCT Images Classification of Cross-Sectional OCT 2D Scans Semantic Segmentation in Cross-Sectional OCT Images Challenges Conclusions Deep Learning Technique for Musculoskeletal Analysis Importance of Musculoskeletal Analysis and Skeletal Muscle Analysis Musculoskeletal Recognition by Handcrafted Features and Its Limitations Skeletal Muscle Segmentation Using Deep Learning Whole-Body Muscle Analysis Using Deep Learning Fusion of Deep Learning and Handcrafted Features in Skeletal Muscle Modeling Conclusion Index