ورود به حساب

نام کاربری گذرواژه

گذرواژه را فراموش کردید؟ کلیک کنید

حساب کاربری ندارید؟ ساخت حساب

ساخت حساب کاربری

نام نام کاربری ایمیل شماره موبایل گذرواژه

برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید


09117307688
09117179751

در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید

دسترسی نامحدود

برای کاربرانی که ثبت نام کرده اند

ضمانت بازگشت وجه

درصورت عدم همخوانی توضیحات با کتاب

پشتیبانی

از ساعت 7 صبح تا 10 شب

دانلود کتاب Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python

دانلود کتاب یادگیری عمیق برای پیش‌بینی سری‌های زمانی: آینده را با MLP، CNN و LSTM در پایتون پیش‌بینی کنید

Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python

مشخصات کتاب

Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python

دسته بندی: برنامه نويسي
ویرایش: 1.6 
نویسندگان:   
سری: Machine Learning Mastery 
 
ناشر: Independently Published 
سال نشر: 2019 
تعداد صفحات: 572 
زبان: English 
فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) 
حجم فایل: 8 مگابایت 

قیمت کتاب (تومان) : 37,000



ثبت امتیاز به این کتاب

میانگین امتیاز به این کتاب :
       تعداد امتیاز دهندگان : 4


در صورت تبدیل فایل کتاب Deep Learning for Time Series Forecasting: Predict the Future with MLPs, CNNs and LSTMs in Python به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.

توجه داشته باشید کتاب یادگیری عمیق برای پیش‌بینی سری‌های زمانی: آینده را با MLP، CNN و LSTM در پایتون پیش‌بینی کنید نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.


توضیحاتی در مورد کتاب یادگیری عمیق برای پیش‌بینی سری‌های زمانی: آینده را با MLP، CNN و LSTM در پایتون پیش‌بینی کنید

روش‌های یادگیری عمیق برای پیش‌بینی سری‌های زمانی بسیار نوید می‌دهند، مانند یادگیری خودکار وابستگی زمانی و مدیریت خودکار ساختارهای زمانی مانند روندها و فصلی. در این کتاب الکترونیکی جدید که به سبک دوستانه تسلط یادگیری ماشینی که به آن عادت کرده‌اید نوشته شده است، از ریاضیات صرف نظر کرده و مستقیماً به نتایج برسید. با توضیحات واضح، کتابخانه‌های استاندارد پایتون (Keras و TensorFlow 2)، و درس‌های آموزشی گام به گام، خواهید فهمید که چگونه مدل‌های یادگیری عمیق را برای پروژه‌های پیش‌بینی سری زمانی خود توسعه دهید.


توضیحاتی درمورد کتاب به خارجی

Deep learning methods offer a lot of promise for time series forecasting, such as the automatic learning of temporal dependence and the automatic handling of temporal structures like trends and seasonality. In this new Ebook written in the friendly Machine Learning Mastery style that you’re used to, skip the math and jump straight to getting results. With clear explanations, standard Python libraries (Keras and TensorFlow 2), and step-by-step tutorial lessons you’ll discover how to develop deep learning models for your own time series forecasting projects.



فهرست مطالب

Copyright
Contents
Preface
I Introduction
II Foundations
	Promise of Deep Learning for Time Series Forecasting
		Time Series Forecasting
		Multilayer Perceptrons for Time Series
		Convolutional Neural Networks for Time Series
		Recurrent Neural Networks for Time Series
		Promise of Deep Learning
		Extensions
		Further Reading
		Summary
	Taxonomy of Time Series Forecasting Problems
		Framework Overview
		Inputs vs. Outputs
		Endogenous vs. Exogenous
		Regression vs. Classification
		Unstructured vs. Structured
		Univariate vs. Multivariate
		Single-step vs. Multi-step
		Static vs. Dynamic
		Contiguous vs. Discontiguous
		Framework Review
		Extensions
		Further Reading
		Summary
	How to Develop a Skillful Forecasting Model
		The Situation
		Process Overview
		How to Use This Process
		Step 1: Define Problem
		Step 2: Design Test Harness
		Step 3: Test Models
		Step 4: Finalize Model
		Extensions
		Further Reading
		Summary
	How to Transform Time Series to a Supervised Learning Problem
		Supervised Machine Learning
		Sliding Window
		Sliding Window With Multiple Variates
		Sliding Window With Multiple Steps
		Implementing Data Preparation
		Extensions
		Further Reading
		Summary
	Review of Simple and Classical Forecasting Methods
		Simple Forecasting Methods
		Autoregressive Methods
		Exponential Smoothing Methods
		Extensions
		Further Reading
		Summary
III Deep Learning Methods
	How to Prepare Time Series Data for CNNs and LSTMs
		Overview
		Time Series to Supervised
		3D Data Preparation Basics
		Data Preparation Example
		Extensions
		Further Reading
		Summary
	How to Develop MLPs for Time Series Forecasting
		Tutorial Overview
		Univariate MLP Models
		Multivariate MLP Models
		Multi-step MLP Models
		Multivariate Multi-step MLP Models
		Extensions
		Further Reading
		Summary
	How to Develop CNNs for Time Series Forecasting
		Tutorial Overview
		Univariate CNN Models
		Multivariate CNN Models
		Multi-step CNN Models
		Multivariate Multi-step CNN Models
		Extensions
		Further Reading
		Summary
	How to Develop LSTMs for Time Series Forecasting
		Tutorial Overview
		Univariate LSTM Models
		Multivariate LSTM Models
		Multi-step LSTM Models
		Multivariate Multi-step LSTM Models
		Extensions
		Further Reading
		Summary
IV Univariate Forecasting
	Review of Top Methods For Univariate Time Series Forecasting
		Overview
		Study Motivation
		Time Series Datasets
		Time Series Forecasting Methods
		Data Preparation
		One-step Forecasting Results
		Multi-step Forecasting Results
		Outcomes
		Extensions
		Further Reading
		Summary
	How to Develop Simple Methods for Univariate Forecasting
		Tutorial Overview
		Simple Forecasting Strategies
		Develop a Grid Search Framework
		Case Study 1: No Trend or Seasonality
		Case Study 2: Trend
		Case Study 3: Seasonality
		Case Study 4: Trend and Seasonality
		Extensions
		Further Reading
		Summary
	How to Develop ETS Models for Univariate Forecasting
		Tutorial Overview
		Develop a Grid Search Framework
		Case Study 1: No Trend or Seasonality
		Case Study 2: Trend
		Case Study 3: Seasonality
		Case Study 4: Trend and Seasonality
		Extensions
		Further Reading
		Summary
	How to Develop SARIMA Models for Univariate Forecasting
		Tutorial Overview
		Develop a Grid Search Framework
		Case Study 1: No Trend or Seasonality
		Case Study 2: Trend
		Case Study 3: Seasonality
		Case Study 4: Trend and Seasonality
		Extensions
		Further Reading
		Summary
	How to Develop MLPs, CNNs and LSTMs for Univariate Forecasting
		Tutorial Overview
		Time Series Problem
		Model Evaluation Test Harness
		Multilayer Perceptron Model
		Convolutional Neural Network Model
		Recurrent Neural Network Models
		Extensions
		Further Reading
		Summary
	How to Grid Search Deep Learning Models for Univariate Forecasting
		Tutorial Overview
		Time Series Problem
		Develop a Grid Search Framework
		Multilayer Perceptron Model
		Convolutional Neural Network Model
		Long Short-Term Memory Network Model
		Extensions
		Further Reading
		Summary
V Multi-step Forecasting
	How to Load and Explore Household Energy Usage Data
		Tutorial Overview
		Household Power Consumption Dataset
		Load Dataset
		Patterns in Observations Over Time
		Time Series Data Distributions
		Ideas on Modeling
		Extensions
		Further Reading
		Summary
	How to Develop Naive Models for Multi-step Energy Usage Forecasting
		Tutorial Overview
		Problem Description
		Load and Prepare Dataset
		Model Evaluation
		Develop Naive Forecast Models
		Extensions
		Further Reading
		Summary
	How to Develop ARIMA Models for Multi-step Energy Usage Forecasting
		Tutorial Overview
		Problem Description
		Load and Prepare Dataset
		Model Evaluation
		Autocorrelation Analysis
		Develop an Autoregressive Model
		Extensions
		Further Reading
		Summary
	How to Develop CNNs for Multi-step Energy Usage Forecasting
		Tutorial Overview
		Problem Description
		Load and Prepare Dataset
		Model Evaluation
		CNNs for Multi-step Forecasting
		Univariate CNN Model
		Multi-channel CNN Model
		Multi-headed CNN Model
		Extensions
		Further Reading
		Summary
	How to Develop LSTMs for Multi-step Energy Usage Forecasting
		Tutorial Overview
		Problem Description
		Load and Prepare Dataset
		Model Evaluation
		LSTMs for Multi-step Forecasting
		Univariate Input and Vector Output
		Encoder-Decoder LSTM With Univariate Input
		Encoder-Decoder LSTM With Multivariate Input
		CNN-LSTM Encoder-Decoder With Univariate Input
		ConvLSTM Encoder-Decoder With Univariate Input
		Extensions
		Further Reading
		Summary
VI Time Series Classification
	Review of Deep Learning Models for Human Activity Recognition
		Overview
		Human Activity Recognition
		Benefits of Neural Network Modeling
		Supervised Learning Data Representation
		Convolutional Neural Network Models
		Recurrent Neural Network Models
		Extensions
		Further Reading
		Summary
	How to Load and Explore Human Activity Data
		Tutorial Overview
		Activity Recognition Using Smartphones Dataset
		Download the Dataset
		Load the Dataset
		Balance of Activity Classes
		Plot Time Series Per Subject
		Plot Distribution Per Subject
		Plot Distribution Per Activity
		Plot Distribution of Activity Duration
		Approach to Modeling
		Model Evaluation
		Extensions
		Further Reading
		Summary
	How to Develop ML Models for Human Activity Recognition
		Tutorial Overview
		Activity Recognition Using Smartphones Dataset
		Modeling Feature Engineered Data
		Modeling Raw Data
		Extensions
		Further Reading
		Summary
	How to Develop CNNs for Human Activity Recognition
		Tutorial Overview
		Activity Recognition Using Smartphones Dataset
		CNN for Activity Recognition
		Tuned CNN Model
		Multi-headed CNN Model
		Extensions
		Further Reading
		Summary
	How to Develop LSTMs for Human Activity Recognition
		Tutorial Overview
		Activity Recognition Using Smartphones Dataset
		LSTM Model
		CNN-LSTM Model
		ConvLSTM Model
		Extensions
		Further Reading
		Summary
VII Appendix
	Getting Help
		Applied Time Series
		Official Keras Destinations
		Where to Get Help with Keras
		Time Series Datasets
		How to Ask Questions
		Contact the Author
	How to Setup a Workstation for Python
		Overview
		Download Anaconda
		Install Anaconda
		Start and Update Anaconda
		Install Deep Learning Libraries
		Further Reading
		Summary
VIII Conclusions
	How Far You Have Come




نظرات کاربران