دسترسی نامحدود
برای کاربرانی که ثبت نام کرده اند
برای ارتباط با ما می توانید از طریق شماره موبایل زیر از طریق تماس و پیامک با ما در ارتباط باشید
در صورت عدم پاسخ گویی از طریق پیامک با پشتیبان در ارتباط باشید
برای کاربرانی که ثبت نام کرده اند
درصورت عدم همخوانی توضیحات با کتاب
از ساعت 7 صبح تا 10 شب
ویرایش: نویسندگان: A. Iosifidis, A. Tefas سری: ISBN (شابک) : 9780323857871 ناشر: سال نشر: 2022 تعداد صفحات: 638 زبان: English فرمت فایل : PDF (درصورت درخواست کاربر به PDF، EPUB یا AZW3 تبدیل می شود) حجم فایل: 19 Mb
در صورت تبدیل فایل کتاب Deep Learning for Robot Perception and Cognition به فرمت های PDF، EPUB، AZW3، MOBI و یا DJVU می توانید به پشتیبان اطلاع دهید تا فایل مورد نظر را تبدیل نمایند.
توجه داشته باشید کتاب یادگیری عمیق برای درک و شناخت ربات نسخه زبان اصلی می باشد و کتاب ترجمه شده به فارسی نمی باشد. وبسایت اینترنشنال لایبرری ارائه دهنده کتاب های زبان اصلی می باشد و هیچ گونه کتاب ترجمه شده یا نوشته شده به فارسی را ارائه نمی دهد.
Front Cover Deep Learning for Robot Perception and Cognition Copyright Contents List of contributors Preface Acknowledgements Editors biographies 1 Introduction 1.1 Artificial intelligence and machine learning 1.2 Real world problems representation 1.3 Machine learning tasks 1.4 Shallow and deep learning 1.5 Robotics and deep learning References 2 Neural networks and backpropagation 2.1 Introduction 2.2 Activation functions 2.3 Cost functions 2.4 Backpropagation 2.5 Optimizers and training 2.6 Overfitting 2.6.1 Early stopping 2.6.2 Regularization 2.6.3 Dropout 2.6.4 Batch normalization 2.7 Concluding remarks References 3 Convolutional neural networks 3.1 Introduction 3.2 Structure of convolutional neural networks 3.2.1 Notation 3.2.2 Convolutional layers 3.2.3 Activation functions 3.2.4 Pooling layers 3.2.5 Fully connected and output layers 3.2.6 Overall CNN structure 3.2.6.1 Famous CNN architectures 3.3 Training convolutional neural networks 3.3.1 Backpropagation formulas on CNNs 3.3.1.1 Backpropagation on convolutional layers 3.3.1.2 Backpropagation on pooling layers 3.3.2 Loss functions 3.3.3 Batch training and optimizers 3.3.3.1 Batch training 3.3.3.2 Optimizers 3.3.4 Typical challenges in CNN training 3.3.4.1 Overfitting 3.3.4.2 Long training time 3.3.4.3 Vanishing and exploding gradients 3.3.4.4 Internal covariate shift 3.3.5 Solutions to CNN training challenges 3.3.5.1 Learning rate scheduling 3.3.5.2 Data augmentation 3.3.5.3 Transfer learning 3.3.5.4 Weight regularization 3.3.5.5 Dropout 3.3.5.6 Normalization 3.3.5.7 Skip connections 3.4 Conclusions References 4 Graph convolutional networks 4.1 Introduction 4.1.1 Graph definition 4.2 Spectral graph convolutional network 4.3 Spatial graph convolutional network 4.4 Graph attention network (GAT) 4.5 Graph convolutional networks for large graphs 4.5.1 Layer sampling methods 4.5.2 Graph sampling methods 4.6 Datasets and libraries 4.7 Conclusion References 5 Recurrent neural networks 5.1 Introduction 5.2 Vanilla RNN 5.3 Long-short term memory 5.4 Gated recurrent unit 5.5 Other RNN variants 5.6 Applications 5.7 Concluding remarks References 6 Deep reinforcement learning 6.1 Introduction 6.2 Value-based methods 6.2.1 Q-learning 6.2.2 Deep Q-learning 6.3 Policy-based methods 6.3.1 Policy gradient 6.3.2 Actor-critic methods 6.3.3 Deep policy gradient-based methods 6.3.3.1 Actor-critic 6.3.3.2 Trust region policy optimization 6.4 Concluding remarks References 7 Lightweight deep learning 7.1 Introduction 7.2 Lightweight convolutional neural network architectures 7.2.1 Lightweight CNNs for classification 7.2.2 Lightweight object detection 7.2.2.1 Real-time generic object detection on embedded devices 7.2.2.2 Real-time face detection 7.3 Regularization of lightweight convolutional neural networks 7.3.1 Graph embedded-based regularizer 7.3.1.1 Discriminant analysis regularization 7.3.1.2 Minimum enclosing ball regularization 7.3.1.3 LLE-inspired regularization 7.3.1.4 Clustering-based DA regularization 7.3.2 Class-specific discriminant regularizer 7.3.3 Mutual information regularizer 7.4 Bag-of-features for improved representation learning 7.4.1 Convolutional feature histograms for real-time tracking 7.5 Early exits for adaptive inference 7.5.1 Early exits using bag-of-features 7.5.2 Adaptive inference with early exits 7.6 Concluding remarks References 8 Knowledge distillation 8.1 Introduction 8.2 Neural network distillation 8.3 Probabilistic knowledge transfer 8.4 Multilayer knowledge distillation 8.4.1 Hint-based distillation 8.4.2 Flow of solution procedure distillation 8.4.3 Other multilayer distillation methods 8.5 Teacher training strategies 8.6 Concluding remarks References 9 Progressive and compressive learning 9.1 Introduction 9.2 Progressive neural network learning 9.2.1 Broad learning system 9.2.2 Progressive learning network 9.2.3 Progressive operational perceptron and its variants 9.2.4 Heterogeneous multilayer generalized operational perceptron 9.2.5 Subset sampling and online hyperparameter search for training enhancement 9.3 Compressive learning 9.3.1 Vector-based compressive learning 9.3.2 Tensor-based compressive learning 9.4 Conclusions References 10 Representation learning and retrieval 10.1 Introduction 10.2 Discriminative and self-supervised autoencoders 10.3 Deep representation learning for content based image retrieval 10.4 Model retraining methods for image retrieval 10.4.1 Fully unsupervised retraining 10.4.2 Retraining with relevance information 10.4.3 Relevance feedback based retraining 10.5 Variance preserving supervised representation learning 10.6 Concluding remarks References 11 Object detection and tracking 11.1 Object detection 11.1.1 Object detection essentials 11.1.1.1 Nonmaximum suppression 11.1.1.2 Performance evaluation 11.1.1.3 Traditional object detection methods 11.1.2 Two-stage object detectors 11.1.3 One-stage detectors 11.1.4 Anchor-free detectors 11.2 Object tracking 11.2.1 Single object tracking 11.2.1.1 Tracking with correlation filters 11.2.1.2 Deep learning based tracking Tracking with offline pretraining Tracking with online training 11.2.1.3 Tracking by similarity learning with Siamese networks 11.2.2 Multiple object tracking 11.2.2.1 Tracking with deep visual representations 11.2.2.2 Tracking as a graph optimization problem 11.2.2.3 Detection-driven tracking 11.3 Conclusion References 12 Semantic scene segmentation for robotics 12.1 Introduction 12.2 Algorithms and architectures for semantic segmentation 12.2.1 Traditional methods 12.2.2 Deep learning methods 12.2.3 Encoder variants 12.2.4 Upsampling methods 12.2.5 Techniques for exploiting context 12.2.5.1 Encoder-decoder architecture 12.2.5.2 Image pyramid 12.2.5.3 Conditional random fields 12.2.5.4 Spatial pyramid pooling 12.2.5.5 Dilated convolution 12.2.6 Real-time architectures 12.2.7 Object detection-based methods 12.3 Loss functions for semantic segmentation 12.3.1 Pixelwise cross entropy loss 12.3.2 Dice loss 12.4 Semantic segmentation using multiple inputs 12.4.1 Video semantic segmentation 12.4.2 Point cloud semantic segmentation 12.4.3 Multimodal semantic segmentation 12.5 Semantic segmentation data sets and benchmarks 12.5.1 Outdoor data sets 12.5.1.1 Cityscapes 12.5.1.2 KITTI 12.5.1.3 Mapillary vistas 12.5.1.4 BDD100K: a large-scale diverse driving video database 12.5.1.5 Indian driving data set 12.5.2 Indoor data sets 12.5.2.1 NYU-Depth V2 12.5.2.2 SUN 3D 12.5.2.3 SUN RGB-D 12.5.2.4 ScanNet 12.5.3 General purpose data sets 12.5.3.1 PASCAL visual object classes 12.5.3.2 Microsoft common objects in context 12.5.3.3 ADE20K 12.6 Semantic segmentation metrics 12.6.1 Accuracy 12.6.1.1 ROC-AUC 12.6.1.2 Pixel accuracy 12.6.1.3 Intersection over union 12.6.1.4 Precision-recall curve-based metrics 12.6.2 Computational complexity 12.6.2.1 Runtime 12.6.2.2 Memory usage 12.6.2.3 Floating point operations per second 12.7 Conclusion References 13 3D object detection and tracking 13.1 Introduction 13.2 3D object detection 13.2.1 Input data for 3D object detection 13.2.2 3D object detection data sets and metrics 13.2.3 Lidar-based 3D object detection methods 13.2.3.1 VoxelNet 13.2.3.2 PointPillars 13.2.3.3 TANet 13.2.3.4 HotSpotNet 13.2.3.5 Point-based methods 13.2.3.6 Projection-based methods 13.2.4 Image+Lidar-based 3D object detection 13.2.5 Monocular 3D object detection 13.2.5.1 Prior information fusion based methods 13.2.5.2 Depth-estimation-based methods 13.2.5.3 Other monocular 3D object detection methods 13.2.6 Binocular 3D object detection 13.3 3D object tracking 13.3.1 3D object tracking data sets and metrics 13.3.2 3D object tracking methods 13.3.2.1 Detection-based tracking 13.3.2.2 Simultaneous detection and tracking 13.4 Conclusion References 14 Human activity recognition 14.1 Introduction 14.1.1 Tasks in human activity recognition 14.1.2 Input modalities for human activity recognition 14.2 Trimmed action recognition 14.2.1 2D convolutional and recurrent neural network-based architectures 14.2.2 3D convolutional neural network architectures 14.2.3 Inflated 3D CNN architectures 14.2.4 Factorized (2+1)D CNN architectures 14.2.5 Skeleton-based action recognition 14.2.5.1 Spatial-temporal graph convolution network 14.2.6 Multistream architectures 14.2.6.1 Multimodal 14.2.6.2 Multiresolution 14.2.6.3 Multitemporal 14.3 Temporal action localization 14.4 Spatiotemporal action localization 14.5 Data sets for human activity recognition 14.6 Conclusion References 15 Deep learning for vision-based navigation in autonomous drone racing 15.1 Introduction 15.2 System decomposition approach in drone racing navigation 15.2.1 Related work 15.2.2 Drone hardware 15.2.3 State estimation 15.2.4 Control for agile quadrotor flight 15.2.4.1 Dynamic model of a racing quadrotor 15.2.4.2 Controller design 15.2.5 Motion planning for agile flight 15.2.6 Deep learning for perception 15.2.6.1 Gate center estimation 15.2.6.2 Global gate mapping 15.2.7 Experimental results 15.3 Transfer learning and end-to-end planning 15.3.1 Related work 15.3.2 Sim-to-real transfer with domain randomization 15.3.3 Perceive and control with variational autoencoders 15.3.4 Deep reinforcement learning 15.3.4.1 RL framework 15.3.4.2 Drone racing environment for DRL 15.3.4.3 Curriculum learning 15.3.4.4 Policy network architecture 15.3.4.5 Experimental results 15.4 Useful tools for data collection and training 15.4.1 Simulation environments for autonomous drone racing 15.4.1.1 AirSim 15.4.1.2 FlightGoggles 15.4.1.3 Flightmare 15.4.2 Data sets 15.5 Conclusions and future work 15.5.1 Conclusions 15.5.2 Future work References 16 Robotic grasping in agile production 16.1 Introduction 16.1.1 Robot tasks in agile production 16.1.2 Deep learning in agile production 16.1.3 Requirements in agile production 16.1.4 Limitations in agile production Grasping hardware Grasping software 16.2 Grasping and object manipulation 16.2.1 Problem statement 16.2.2 Analytical versus data-driven approaches 16.2.3 Grasp detection with RGB-D Known objects Similar objects Novel objects PVN3D 16.2.4 Grasp detection with point clouds 6-DOF GraspNet 16.3 Grasp evaluation 16.3.1 Metrics 16.3.2 Pose estimation with PVN3D Data collection and training Results 16.3.3 Grasp detection with 6-DOF GraspNet Data collection and training Results 16.3.4 Pick-and-place results 16.4 Manipulation benchmarking 16.5 Data sets 16.6 Conclusion References 17 Deep learning in multiagent systems 17.1 Introduction 17.2 Setting the scene 17.3 Challenges 17.4 Deep learning in multiagent systems 17.4.1 Individual learning 17.4.1.1 Direct learning 17.4.1.2 Learning about self 17.4.1.3 Transfer learning 17.4.2 Collaborative and cooperative learning 17.4.2.1 Mentoring 17.4.2.2 Social learning 17.4.2.3 Federated learning 17.4.2.4 Distributed learning and edge intelligence 17.5 Conclusion References 18 Simulation environments 18.1 Introduction 18.1.1 Robotic simulators architecture 18.1.2 Simulation types 18.1.3 Qualitative characteristics 18.2 Robotic simulators 18.2.1 Gazebo 18.2.1.1 Architecture 18.2.1.2 Plugins 18.2.1.3 Robotic models 18.2.1.4 ROS/ ROS 2 support 18.2.1.5 Cloud simulation 18.2.1.6 Research works 18.2.2 AirSim 18.2.2.1 Architecture 18.2.2.2 Environments and models 18.2.2.3 Research works 18.2.3 Webots 18.2.3.1 Architecture 18.2.3.2 Environments and models 18.2.3.3 Research works 18.2.4 CARLA 18.2.4.1 Architecture 18.2.4.2 Environments and models 18.2.4.3 Research works 18.2.5 CoppeliaSim 18.2.5.1 Overview and features 18.2.5.2 Research works 18.2.6 Other simulators 18.2.6.1 MORSE 18.2.6.2 ARGoS 18.2.6.3 USARSim 18.2.6.4 Nvidia's Isaac Sim 18.2.6.5 RoboDK 18.3 Conclusions References 19 Biosignal time-series analysis 19.1 Introduction 19.2 ECG classification and advance warning for arrhythmia 19.2.1 Patient-specific ECG classification by 1D convolutional neural networks 19.2.1.1 ECG data 19.2.1.2 Methodology 19.2.1.3 Results 19.2.2 Personalized advance warning system for cardiac arrhythmias 19.2.2.1 ABS filter 19.2.2.2 ABS filter selection 19.2.2.3 Evaluation of ABS filters 19.3 Early prediction of mortality risk for COVID-19 patients 19.3.1 Introduction and motivation 19.3.2 Methodology 19.3.2.1 Study participants 19.3.2.2 Statistical analysis 19.3.2.3 Imputation and feature selection 19.3.2.4 Development and validation of classification model 19.3.2.5 Development and validation of nomogram based scoring system 19.3.3 Results and discussion 19.3.3.1 Performance evaluation of the classification model 19.3.3.2 Performance evaluation of the developed nomogram model 19.3.3.3 Longitudinal validation of prognostic model 19.4 Conclusion References 20 Medical image analysis 20.1 Introduction 20.2 Early detection of myocardial infarction using echocardiography 20.2.1 Methodology 20.2.1.1 Pseudo-labeling technique for ground-truth generation 20.2.1.2 Segmentation of the LV wall 20.2.1.3 Feature engineering 20.2.1.4 Myocardial infarction detection 20.2.2 Experimental evaluation 20.2.2.1 HMC-QU data set 20.2.2.2 LV wall segmentation experiments 20.2.2.3 Myocardial infarction detection experiments 20.2.2.4 Computational complexity analysis 20.3 COVID-19 recognition from X-ray images via convolutional sparse support estimator based classifier 20.3.1 Preliminaries 20.3.1.1 Sparse signal representation 20.3.1.2 Representation based classification 20.3.2 CSEN-based COVID-19 recognition system 20.3.2.1 Data set 20.3.2.2 Feature extraction via CheXNet 20.3.2.3 CSEN-based classifier 20.3.2.4 Evaluation of the classifiers 20.3.3 Experimental evaluations 20.3.3.1 Experimental setup 20.3.3.2 Experimental results 20.4 Conclusion References 21 Deep learning for robotics examples using OpenDR 21.1 Introduction 21.2 Structure of OpenDR toolkit and application examples 21.3 Cointegration of simulation and training 21.3.1 One-node architecture 21.3.2 Emitter-receiver architecture 21.3.3 Design decisions 21.4 Concluding remarks References Index Back Cover